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Preface

Today’s mobile robot perception is insufficient for acting goal-directedly in un-
constrained, dynamic everyday environments like a home, a factory, or a city.
Subject to restrictions in bandwidth, computer power, and computation time,
a robot has to react to a wealth of dynamically changing stimuli in such en-
vironments, requiring rapid, selective attention to decisive, action-relevant in-
formation of high current utility. Robust and general engineering methods for
effectively and efficiently coupling perception, action, and reasoning are unavail-
able. Interesting performance, if any, is currently only achieved by sophisticated
robot programming exploiting domain features and specialties, which leaves or-
dinary users no chance of changing how the robot acts.

The latter facts are high barriers for introducing, for example, service robots
into human living or work environments. In order to overcome these barriers,
additonal R&D efforts are required. The European Commission is undertak-
ing a determined effort to fund related basic, inter-disciplinary research in a
line of Strategic Objectives, including the Cognitive Systems calls in their 6th
Framework Programme (FP6, [1]), and continuing in the 7th Framework Pro-
gramme. One of the funded Cognitive Systems projects is MACS (“multi-sensory
autonomous cognitive systems interacting with dynamic environments for per-
ceiving and using affordances”).

In cognitive science, an affordance in the sense of perceptual psychologist
J.J. Gibson [2] is a resource or support that the environment offers an agent for
action, and that the agent can directly perceive and employ. Only rarely has this
concept been used in robotics and AI, although it offers an original perspective
on coupling perception, action, and reasoning, differing notably from standard
hybrid robot-control architectures. Taking it literally as a means or a metaphor
for coupling perception and action directly, the potential that affordances offer
for designing new powerful and intuitive robot-control architectures is obvious.

Perceiving affordances in the environment means that perception is filtered
through the individual capabilities for physical action and through the current
goals or intentions, thereby coupling perception and action deep down in the
control architecture and providing an action-oriented interpretation of percepts
in real time. Moreover, affordances provide on a high granularity level a basis for
agent interaction and for learning or adapting context-dependent, goal-directed
action.

The main objective of the MACS project is to explore and exploit the con-
cept of affordances for the design and implementation of autonomous mobile
robots acting goal-directedly in a dynamic environment. The aim is to develop
affordance-based control as a method for robotics. The potential of this new
methodology will be shown by going beyond navigation-like tasks towards goal-
directed autonomous manipulation in the project demonstrators.
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During the MACS proposal phase in late 2003, the idea of organizing an
interdisciplinary Dagstuhl seminar related to the core MACS topics emerged.
The planned purpose of the seminar was threefold, namely, (1) to disseminate
the MACS project ideas and concepts into related scientific communities, (2)
to receive feedback on and discuss these ideas, and (3) to discuss the usage of
affordances in other research areas.

The organizers saw researchers in four broad areas (philosophy and logic,
artificial intelligence and computer science, psychology, and economics and game
theory) addressing highly related (in some cases, the same) problems, in which
work in one area in all likelihood would benefit research in another. Hence for the
Dagstuhl seminar, the organizers felt that valuable interactions and contributions
could be anticipated by bringing people together from these areas. The aim of
the seminar was to bring together researchers from robotics, informatics, and
the cognitive sciences to exchange their experiences and opinions, and generate
new ideas regarding the following essential questions:

– How could or should a robot-control architecture look like that makes use of
affordances in perceiving the environment?

– How could or should such an architecture make use of affordances for action
and reasoning?

– Is there more to affordances than function-oriented perception, action, and
reasoning?

The answers to these questions are currently wide open. Two points can be
stated with certainty, however. First, an affordance-based or affordance-inspired
robot-control architecture cannot simply be an extension (an “added layer,” so
to speak) to existing modern control architectures. The reason is that affor-
dances would spring into existence in low-level perception, would have to pass
filters in the control, such as attentional mechanisms, in order not to flood the
robot’s higher processing levels, and serve in some explicitly represented form
of a structured result of perception as a resource for action selection, deliber-
ation, and learning. So if there is such a thing as an affordance-based control
architecture, affordances will have to play a role in all of its layers.

Second, the answers to the seminar questions do not depend on whether
or not the cognitive sciences agree that Gibson is “right” in the sense that
affordances exist in biological brains or minds or exist in the interaction between
biological individuals and their environment. The point is, if Gibson’s description
of phenomena of functional coupling between perception and action is correct,
then it is of high interest for robot control designers, independent of how it is
best understood according to cognitive science standards. Therefore, the seminar
would profit from either proponents or opponents of the affordance model. The
aim here was discussion and exchange, not unanimity.

The organizers brought together 32 researchers from different scientific com-
munities to attend the seminar. Given that the scientific background of the
participants was not homogeneous, and that there was only little technical work
that directly fit the seminar topic (as remarked above, there are only relatively
few examples of using explicitly the concept of affordances), the program (cf. [3])
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was composed of six overview talks centered around the state of the art, serving
to inform the heterogeneous audience, and 13 technical presentations of mainly
young researchers working in related areas.

Presentations, an abstract collection of all contributions, and an executive
seminar summary can be found at the Dagstuhl Web site [3]. Twelve of the sem-
inar contributions have been elaborated as full articles for this post-proceedings
volume. Additionally, a highly relevant paper from Alex Stoytchev has been
invited to complement the seminar contributions.

The organizers express their gratitude to the Dagstuhl foundation for their
support and for hosting this seminar in their exceptional facilities, and to the
participants for their contributions and for making the seminar successful and
enjoyable. The work of organizing and conducting the seminar was partly funded
by the European Commission’s 6th Framework Programme IST Project MACS
under contract/grant number FP6-004381. The Commission’s support is grate-
fully acknowledged.

September 2007 Erich Rome
Joachim Hertzberg

Georg Dorffner
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Interpersonal Maps: How to Map Affordances for
Interaction Behaviour

Verena V. Hafner1 and Frédéric Kaplan2

1 Humboldt-Universität zu Berlin, Institut für Informatik, Berlin, Germany
hafner@informatik.hu-berlin.de

2 Ecole Polytechnique Federale de Lausanne, CRAFT, Lausanne, Switzerland
frederic.kaplan@epfl.ch

Abstract. In a study of how the concept of affordances could be applied to inter-
action behaviour, we introduce the notion of “interpersonal maps”, a geometrical
representation of the relationships between a set of proprioceptive and hetero-
ceptive information sources, thus creating a common representation space for
comparing one’s own behaviour and the behaviour of others. Such maps can be
used to detect specific types of interactions between agents such as imitation.
Moreover, in cases of strong couplings between agents, such representations per-
mit to map directly an agent’s body structure onto the structure of an observed
body, thus addressing the body correspondence problem. These various cases are
studied with several robotic experiments using four-legged robots either acting
independently or being engaged in delayed imitation. Through a precise study of
the effects of the imitation delay on the structure of the interpersonal maps, we
show the potential of this “we-centric” space to account for both imitative and
non imitative interactions.

1 Introduction

In 1977, perceptual psychologist J. J. Gibson defined an affordance as “a resource or
support that the environment offers an agent for action, and that the agent can directly
perceive and employ” [1]. Even though people are disagreeing about the possible ap-
plications of this theory in the cognitive sciences, affordances can be seen as a useful
theory of interaction for many disciplines including robotics. Affordances link percep-
tion and action depending on the current goals or intentions of an agent. Gibson also
stated that affordances are not classifications of objects, but rather a function-centered
view, and therefore provide a more intuitive view of oneself in a certain environment
or situation. An everyday example for this view are sorting systems in human environ-
ments. Following Gibson’s theory of affordances, putting a priority on the affordance of
an object (e.g. cutting, connecting) is more intuitive than sorting objects by their name
or appearance. Humans can also employ attentional processes to focus on the percep-
tion of a particular affordance. This leads to joint attention [2] in the case of interaction
behaviour.

Most of the research in affordances has focused on interactions between an agent and
its environment [3]. However, we believe that affordances are also a relevant concept in
the case of the interaction between two agents. In another research, we have explored

E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 V.V. Hafner and F. Kaplan

a novel framework permitting unsupervised activity classification [4] based on coordi-
nation patterns. Here, we introduce and explore the concept of “interpersonal maps”,
the application of the same idea to interaction behaviour. This concept is defined in the
framework of information theory and can be applied in the context of interactions be-
tween living entities as well as between artifacts. Although information theory has his-
torically been mainly concerned with information transmission between a sender and a
receiver [5,6], several lines of research have focused on addressing issues concerning
relationships between information sources [7,8,9]. In particular, it has been shown that
the space of information can be equipped with a metric [10]. It is therefore possible
to adapt some of the vocabulary and tools of geometry to the domain of information
theory. Interpersonal maps are geometrical representations of relationships between a
set of information sources.

The notion of interpersonal maps is related to several existing concepts in psychol-
ogy and neuroscience. To account for early imitation, Meltzoff and Moore argue for the
existence of an intermodal mapping establishing equivalence relations between differ-
ent modalities such as vision or motor actions [11,12]. Such a model suggests that both
perceived (self) and observed (others) behaviour could be represented in a shared neu-
ral format. Similarly, Gallese has argued that since the beginning of our life we inhabit
a shared multidimensional interpersonal space. When we observe other individuals, “a
meaningful embodied interpersonal link is established”. Gallese refers to this form of
intersubjectivity as the shared manifold space. Furthermore, his theory predicts the ex-
istence of “somatosensory mirror neurons” giving the capacity to map different body
locations during the observation of the bodies of others [13]. However, few models try
to give a precise account on how such interpersonal or intermodal mappings could be
developed.

The approach presented in this article is directly inspired by several methods con-
cerning unsupervised map building recently described in the field of artificial intel-
ligence and autonomous robotics. Pierce and Kuipers present a method for building
maps of a sensory apparatus out of raw uninterpreted sensory data [14,15]. This so-
called sensory reconstruction method is based on various distances between sensors
such as a normalised Hamming distance metric and a frequency metric. Sensors are
clustered into subgroups based on their relative distance. The dimensionality of each
subgroup can then be computed, related sensors can be projected to form a sensor map.
Building on this sensory reconstruction method, Olsson, Nehaniv and Polani [16] have
suggested to use the information metric defined by Crutchfield [10] as a more inter-
esting measure of the distance between two information sources. They have conducted
experiments with various sensor sets including visual and proprioceptive sensors on an
AIBO robot. Related approaches were also investigated by Kuniyoshi’s research team
[17]. Most of these approaches interpret such sensory reconstruction methods as a way
of building maps of sensors in an unsupervised manner. Some of these works make the
comparison with somatosensory maps discovered in the brain.

We extend and, more importantly, reinterpret the sensory reconstruction method.
The sensory reconstruction method is well-adapted to address processes underlying the
emergence of behavioural complexity, but it may be misleading to interpret it only as a
formation of a body map. A particular set of distances captures not only aspects of an
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agent’s embodiment, but can also reflect the agent’s current activities and the situated
nature of its interaction with the environment. In particular, a specific configuration may
appear in the case of couplings with other agents or in cases of remarkable coordination
patterns, thus allowing the system to be interpreted as an application of the theory of
affordances. We will now present the approach in a more formal manner and give results
of preliminary experiments showing how this framework can be used in the context of
robot-robot imitation.

2 Maps Based on Information Distances

This section reviews and illustrates the basic principles of map construction based on
information distances as it is used in several other articles (e.g. [14,16,4]) . This will
provide the basic elements for introducing in the next section the notion of interpersonal
maps.

2.1 Definition

Distance Between Information Sources. Let us assume that the robot RX is equipped
with n sensors (proprioceptive and distance sensors). At any time t its sensory state can
be captured by the vector X(t)

X(t) = (X1(t), X2(t), . . . , Xn(t)) (1)

For any sensor Xi the entropy H(Xi) can be calculated as

H(Xi) = −
∑

xi

p(xi) log2 p(xi)

where p(xi) is the probability mass function over all possible discretised values xi. To
calculate it, the distribution of the values of Xi has to be computed with a careful choice
of the number of bins (see [18]). A good solution to avoid this problem is to introduce
adaptive binning [19]. In such a case, the size of the bins is variable and chosen in a
way that maximises the entropy for each sensor.

The conditional entropy for two sensors Xi and Xj can be calculated as

H(Xj |Xi) = −
∑

xi

∑

xj

p(xi, xj) log2 p(xj |xi)

where p(xj |xi) = p(xj , xi)/p(xi).

Crutchfield defines the information distance between two information sources as:

d(Xj , Xi) = H(Xi|Xj) + H(Xj |Xi) (2)

and the normalised information distance as

dN (Xj , Xi) =
H(Xi|Xj) + H(Xj |Xi)

H(Xi, Xj)
(3)
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d is a metric for the space of information sources [10]. (It can easily be shown that dN

is a metric, since the normalisation is a scale change). This means that it has the three
properties of symmetry, equivalence and triangle inequality. This is its main advantage
compared to mutual information MI(Xi, Xj) = H(Xi) + H(Xj) − H(Xi, Xj).

– d(X, Y ) = d(Y, X) follows directly from the symmetry of the definition
– d(X, Y ) = 0 if and only if X and Y are recoding-equivalent (in the sense defined

by Crutchfield [10]).
– d(X, Z) ≤ d(X, Y ) + d(Y, Z)

As H(Xi, Xj) = H(Xi)+H(Xj |Xi), dN ≤ 1. dN = 1 means that the two sources
are independent. In the following experiments, we will use the normalised information
distance simply written as d = dN .

The existence of this metric implies that the space of information has a topological
structure. This permits interesting development such as the continuity of functions on
information sources or the convergence of sequences of information sources. However,
these properties are not central for the issues discussed here.

Other information metrics exist like Fisher information used on statistical manifolds
([20], see also [21]). These metrics are usually defined locally. To obtain the distance
between two points on an information manifold, integration over geodesics is needed.
In our case, Crutchfield’s metric can be applied directly without such a relatively com-
plicated intervention.

Configuration. Let us define a configuration as the information distance matrix D
corresponding to the different distances between the information sources Xi

D =

⎧
⎪⎪⎨

⎪⎪⎩

d(X1, X1) ... d(X1, Xn)
d(X2, X1) ... d(X2, Xn)
. . . . . . . . . . . . . . . . . . . . . . .
d(Xn, X1) ... d(Xn, Xn)

⎫
⎪⎪⎬

⎪⎪⎭
(4)

As d(Xi, Xi) = 0, elements of the diagonal are all zero. As d(Xi, Xj) = d(Xj , Xi),
D is symmetrical.

D summarises some important aspects about the organisation of the information
sources of the system, by specifying which sources are related in terms of information
and which ones are independent of the context in which the information is gathered.

Two-Dimensional Metric Projection. Going from relative positions as they are cap-
tured by a distance matrix D to a map representation where points {pi} can be placed is
a constraint-satisfaction problem [14]. Each couple of points pi and pj should satisfy:

||pi − pj|| = di,j (5)

where ||pi −pj|| is the Euclidean distance between the position of the ith and jth point

and di,j is the corresponding distance in the matrix D. There are n(n−1)
2 equations to

satisfy. A set of n points of dimension n − 1 permits to solve this equation given this
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set of constraints optimally, but in order to get a lower dimension representation an ap-
proximation must be taken. Pierce and Kuipers describe a method used by statisticians
to determine a good dimensionality for projecting a given set of data [14]. In the rest of
the article, two-dimensional projections are used for illustrative purposes although they
may not be the optimal ones.

In order to create a two-dimensional map we can apply a relaxation algorithm. The
algorithm is an iterative procedure of positioning the sensors in a two-dimensional space
in such a way that the metric distance between two sensors in this map is as close as
possible to the distance in the n-dimensional information space. Different algorithms
exist in the literature [22,23,24]. Here, the algorithm of Pierce is used since it does not
require any information about the relative orientation of connections between sensor
nodes [24].

More precisely, the algorithm used in this paper consists of an iteration of two simple
steps. Before these two steps, each sensor Xi is randomly assigned to a point pi on a
two-dimensional plane.

1. The force fi on each point pi is computed as:

fi =
∑

fij

where
fij = (||pi − pj|| − d(Xi, Xj))(pj − pi)/||pj − pi||

2. Each point pi is moved according to the force fi:

pi = pi + ηfi

where η = 1/n.

The energy E of the map can be calculated using the difference of the information
distances d and the Euclidean distances l of sensor points in the map.

E =
∑

ij

(dij − lij).

2.2 Example

Sensory data have been collected from an AIBO robot (Sony AIBO ERS-7, dimensions:
180 (W) x 278 (H) x 319 (D) mm) performing a slow walk while moving its head
continuously from side to side. The walk was a straight movement performed in an
open space (no obstacle). For this first experiment, we tried to limit the influence of the
environment on the behavior. Each leg has 3 degrees of freedom, as well as the head.
Infrared distance sensors are mounted on the head and on the main body1. The recorded
sensors were:

1 The robot has a colour camera mounted above its mouth, electro-static touch sensors, paw
sensors, LED lights, all of which are not used in the present experiment but have been exploited
in other research conducted with this robot (e.g. [25,26]).
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Fig. 1. Information distance matrix and bodymap. The values in the matrices range from zero
(dark) to high (light). The mapping from the sensors to the position of the sensors on the robot’s
body is clearly visible.
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4-6 head (proprioceptive sensors)
7-9 right front leg

10-12 right hind leg
13-15 left front leg
16-18 left hind leg
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During the walk, 1000 sensor values have been collected for each of these 18 sen-
sors. Figure 1 shows an example of the distance matrix and the maps resulting from the
relaxation algorithm using the sensor measurements of the AIBO robot. In this experi-
ment, hip and shoulder joints show remarkable coordination patterns (and also distance
sensors and head joints to some extent). Figure 1 bottom shows the two-dimensional
map of the robot sensors after applying the relaxation algorithm until the position of
the sensor points converged. The decrease in energy of the map can be seen in figure 2.
In the map of figure 1, the arrangement of the sensors in the body map already corre-
sponds roughly to the sensor distribution on the body of the robot. Distance and head
sensors are arranged in the upper right half of the map, the knee joints of all four legs on
the lower right of the map and all other leg sensors on the left side. The exact map de-
pends on the random initial conditions which are different for each run of the relaxation
algorithm, but the maps have comparable structures.

The particular emergent organisation of the map results from the body structure of
the robot as well as from the behavioural patterns it conducts in a particular environ-
ment. In this particular setting, embodiment constraints linking sensor information are
probably the most significantly captured (e.g. spatially close similar sensors). In that
sense, such maps can be interpreted as a body image. However, for other coordination
patterns emergent configurations may differ greatly [4].

3 Interpersonal Maps

In this section, the maps from the previous section that represented both the body and
the behaviour of one robot, will be extended to maps including the interaction with
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another robot. This is applied to the scenario of an imitation behaviour between robots,
in which a strong coupling exists. Different interaction cases are independent behaviour,
perfect imitation behaviour, and imitation behaviour with a delay in imitation.

3.1 Definition

The concept of a map can be extended to include not only internal proprioceptive sen-
sors but also external sensors such as visual information. This permits to relate in the
same format information about the robot’s own body with information about other
robots perceived through sensors. Let us define the state of the robot RY by a vector of
size m:

Y (t) = (Y1(t), Y2(t), . . . , Ym(t)) (6)

A possible formalisation of this situation can be obtained by supposing that the be-
haviour of the other robot RY is perceived through k new sensors in addition to the
ones dedicated to proprioception. The new vector X(t) of size n + k can be expressed
as below, where g is a potentially complex function linking the state of RY (dimension
m) to the perceived state of RX (dimension k).

X(t) = (X1(t), . . . , Xn(t), g1(Y (t)), . . . , gk(Y (t))) (7)

In such conditions, a map can be built using the same method as the one described in
the previous section. In general, the sensors corresponding to the perceived state of RY

will not be correlated with the activity of RX , but they should show separated intracor-
related patterns. In such a case, the body schemas of RX and RY should appear as two
distinct clusters in the maps. However in some cases, some intercorrelations could be
found between the two sets of sensors. This could be in particular the case when the two
robots interact in a closely coupled manner, for instance during a direct imitation task.
Such maps can be seen as conceptual signatures for the body correspondence problem.
We will now show examples of these two situations.

For the sake of simplicity, we assume in the following examples that g offers a linear
mapping linking the sensory states of the observed robot to the states perceived by the
observing robot. We will discuss this assumption in the next section.

3.2 Example 1: No Intercorrelation

In this example, we used the sensors recorded from the walking robot together with
the sensors of another robot it could have observed. The other robot was sitting and
stretching its legs and neck. Altogether, this results in a recording of 36 sensors during
1000 time steps.

Since there is no interaction between the two robots, the two sensor groups are not
directly correlated. This results in a smaller information distance on average between
two sensors of the same robot than between two sensors of different robots. The inter-
personal body map in figure 3 therefore shows two clusters. The first cluster has sensor
indices from 1 to 18, the second cluster has sensor indices from 19 to 36. The clus-
ters are indicated with an ellipse each that corresponds to the confidence region of the
cluster assuming a Gaussian distribution. Since there are only 18 data points per clus-
ter, this is only a rough approximation and serves the understanding of the graph. The
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Fig. 3. Information distance matrix and interpersonal body map for a robot observing another
robot behaving independently

body schemas within the two clusters are more distorted than the one in figure 1 bottom
due to the interplay of the sensors, but a concentration of the head and distance sensors
towards the centre of the map is still visible.

3.3 Example 2: Intercorrelation

This example studies the sensory information of one robot imitating the behaviour of the
other. In this case, the robots were performing the same programmed walking pattern
with a time delay of 10 recordings which corresponds to about half a second (figure 4).
In this case, the interpersonal body map does not show two clusters anymore but shows
a mapping between sensors of a similar type. Sensors with indices i and i + 18 are very
close to each other on the body map. In the graphs, they are connected by lines. These
lines are much shorter than in the previous graph showing that the information distances
between corresponding sensors are small (e.g. X1 and X19).
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Fig. 4. Information distance matrix and interpersonal body map for a robot being imitated by
another robot with a time delay of half a second
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3.4 Influence of Delay on the Map Organization

In a further series of experiments, the delay in imitation of the behaviour of one robot
by another robot has been varied. The experiments were performed on a robot walk-
ing behaviour of 40 seconds imitated with a delay Δ between 0 and 10 seconds. The
temporal resolution was again 20 Hz.

To quantify the amount of clustering given the information distances between sensor
measurements, we introduced a measurement for clustering, the clustering factor c.

c = (A1 + A4)/(A2 + A3) where A1, A2, A3, A4 are the sums of distances in the
quadrants of the distance matrix D.

A

A A

A

3 4

1 2

In the case of a single cluster c should be 1, in the case of two separated clusters c
will be smaller than 1.

In figure 5, the clustering factor c over the imitation delay is shown. From a delay
of about 1s, a shift occurs and c decreases strongly. It can also be seen that several
oscillations occur with a length of about 40 data points (2s). These correspond to the
oscillation pattern in the walking behaviour. However, the shift in the clustering factor
and therefore in the interpersonal map around the imitation delay of 1s is more promi-
nent than the changes due to the oscillatory behaviour.
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Fig. 5. Effect of the delay in imitation on the clustering of the interpersonal map
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Fig. 6. Interpersonal maps for different delays in imitation: 10 (upper left), 30 (upper right), 60
(bottom left), and 120 (bottom right) data points (20dp=1s)

In figure 6, the interpersonal maps with different delays in imitation are displayed
together with the two ellipses indicating the cluster of each robot’s sensors as well as
lines connecting corresponding sensors between the two robots. The chosen delays in
imitation are 0.5s, 1.5s, 3s and 6s. The clustering becomes more clear when increasing
the imitation delay up to 3s, but is similar for 3s and 6s. Please note that these are
examples of relaxation maps for the given imitation time delays, but they will look
different for each run due to the random initialisation parameters.

As the delay increases, the configuration of the interpersonal map progressively
shifts. This evolution can be represented by performing principal component analy-
sis (PCA) in the configuration space (the space of the distance matrices) and projecting
the data onto its first few principal components. The points corresponding to each con-
figuration for an imitation delay between 0 and 100 data points (corresponding to 5s)
are plotted in figure 7 using the first three principal components. The rapid evolution
for the initial high coupling imitation configurations to a cluster corresponding to low
coupling situations can be clearly seen. This gives yet another view of this transition for
coupled to non-coupled situations.

These different measures and representations support the idea that interpersonal
maps can act as signatures of the types of coupling between interacting agents. For
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Fig. 7. Projection of the inter-robot information distances onto their first principal components

the present research, we have not implemented a way of classifying these patterns in a
fully autonomous manner but we are confident that this is possible although the way to
implement such an automatic process would certainly depend on the application con-
sidered.

4 Discussion

Our model makes a series of assumptions that need to be discussed. The first one is to
separate sensors related to proprioception with sensors related to external perception. In
practice, such a clear distinction cannot be obtained. Our embodied perception merges
both internal and external stimuli without a priori discrimination. However, presenting
the model this way helps clarifying the mechanism we describe.

More importantly, we assume that robot RX ’s perception of the behaviour of robot
RY can be modelled using a function g mapping the state of RY to RX ’s perceptual
state. This is a reasonable assumption in the sense that in some way or another the ob-
servation of the behaviour of RY can be related to RY ’s internal state. The fact that
relevant information about RY ’s state can be reconstructed after this function has been
applied is potentially more questionable. In our context, what counts is that some inter-
correlation between Y and X can still be discovered.

We must admit that it is likely that g is a rather complex function. Even in that
case intercorrelations could potentially be discovered in several circumstances. One
possibility is that RY scaffolds the interaction to make its perceived behaviour more



Interpersonal Maps: How to Map Affordances for Interaction Behaviour 13

tuned to its own internal state. It has been well studied that adults adapt to children in
order to make their overt behaviour more easily analysed [27,28].

Another possibility is that the biases of g are evaluated by a separated mechanism.
More generally, the progressive awareness of self and others is likely to be linked with
several other developmental processes. Other embodied developmental models suggest
for instance that discrimination based on levels of predictability could play a key role
in development of the animate/inanimate distinction and the self/other discrimination
[29].

Here, we have deliberately chosen not to focus on these important issues in order to
investigate first what could be captured by approaches based on information distance
matrices. Interpersonal maps may offer a possible unified framework accounting for
the structure of the agent’s body schema as well as a representation of the observed
behaviour of another agent. In cases of strong couplings between agents, a “we-centric”
cluster can emerge in which the agent’s body structure can be directly mapped onto the
structure of an observed body. The system takes different features into account, such as
the body, the environment, as well as the agent’s behaviour and actions, thus being a
perfect architecture for mapping affordances.

We strongly believe that the dynamics responsible for self-other distinction are tightly
related with the ones accounting for the construction of the body schema and that both
processes must be studied together. It is also clear that information available in such kinds
of maps can have a direct influence on the coupling behaviour itself. Our future research
will therefore investigate further the consequences of the structuring of this interpersonal
space and the possible usage of this type of relational information in the larger context of
robotic control architecture. In other words, we must now “close the loop” and show how
such interpersonal maps can be used to structure interactions in return. The present re-
search has explored some forms of bottom-up building of information maps, computation
performed using such maps should now result in top-down influences.
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Abstract. Gibson’s notion of affordance seems to attract roboticists’
attention. On a phenomenological level, it allows functions, which have
“somehow” been implemented, to be described using a new terminology.
However, that does not mean that the affordance notion is of help for
building robots and their controllers. This paper explores viewing an af-
fordance as an abstraction from a robot-environment relation that is of
inter-individual use, but requires an individual implementation. There-
fore, the notion of affordance helps share environment representations
and theories among robots. Examples are given for navigability, as af-
forded by environments of different types to robots of different under-
carriages and sensor configurations.

1 Background

Among the most basic properties that a mobile robot needs to perceive about
its environment is whether it can go someplace, i.e., drive, walk, crawl, climb—
whatever its kinematics. State-of-the-art work in indoor robot navigation typi-
cally abstracts away from many details of the problem by assuming implicitly
that any area that is not perceived as being blocked is navigable. That works
as long as you make sure your robot stays clear of staircases, glass doors and
mirrors, no drawers out of sensor height are left open, the robot fits under all
table-tops, and, of course, the floor is sufficiently flat for its undercarriage. In
a nutshell: Out of relatively protected lab environments, it is to-day non-trivial
for a mobile robot to determine whether it can physically move to some location
in its vicinity.
� Work in parts done in the projects (1) LISA, which is funded by the German Fed-

eral Ministry of Education and Research (BMBF) within the Framework Concept
”Research for Tomorrow’s Production” (fund number 02PB2170-02PB2177) and
managed by the Project Management Agency Forschungszentrum Karlsruhe, Pro-
duction and Manufacturing Technologies Division (PTKA-PFT); and (2) MACS,
which is funded by the European Commission’s 6th Framework Programme IST
Project MACS under contract/grant number FP6-004381. The Commission’s sup-
port is gratefully acknowledged.
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Would it then make sense to work on a Grand Theory of Navigability for
mobile robots to solve the problem once and for all? Probably not, as there is no
such thing as “objective navigability” in the world—whether or not a particular
robot can boldly go where it has never gone before depends on its undercarriage,
kinematics, geometry, control, power, and many other parameters. Considering
as a zoo of robots a B21 with its small hard wheels, an outdoor Kurt3D with
20 cm diameter rubber wheels, a regular street car, and a walking machine, it is
obvious that there are tremendous differences. Navigability is a relation between
a particular individual or class of robots and its environment, much like Chemero
[4] has stressed in interpreting Gibson’s [9] affordances.

Does that mean that navigability, being something utterly subjective for a
robot, should be deleted from the robot programmer’s vocabulary? Not either!
The concept is generally useful for a mobile robot, just the attribution to some
area in space (the concept’s implementation, to use informaticists’ speak) differs
among different robots. As an abstraction, it is of general use. For example, it
can be communicated among fellow robots, using a uniform meaning, but relying
on different implementations (“Is that area navigable for you?”). If some piece of
high-level robot control software is to be exchanged between different individuals
of robots, then navigability is a good candidate for an abstract concept that can
be used uniformly on a high level of programming or modeling, and that may
require an individual implementation or “grounding” on every individual robot.

So this informal essay interprets, from a robot designer’s point of view, an
affordance as an abstraction from a robot-environment relation that is of inter-
individual use, but requires an individual implementation or grounding. Whether
an affordance is currently present in some environment must be effectively de-
terminable; perceiving it should typically require very little computation, based
on available sensor data. The inter-individual use may in particular lie in sharing
some abstract, high-level domain model that deals with the abstracted relation.
So for example, if navigability of some connected area implies reachability be-
tween any two of its positions, then this implication remains true no matter what
is navigable for a particular robot.

In the following, we will give an example, using the concept of navigability, of
the use and usefulness of this view of affordances. First we give three examples
from own previous work for different groundings of navigability; we will point
to some other approaches from the literature. Path planning is an example for a
general functionality using navigability as a basic concept and delivering different
results for different navigability groundings. Sec. 3 discusses our view on the
potential view of affordances in robot control. In the end, we summarize our
argument in favor of using affordances, in the interpretation just sketched, in
robot design.

2 Groundings of Navigability

Every computer program would yield correct results only if applied under the
conditions stated in its specification. This holds for robot control systems, too.
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For example, the navigation control of a mobile robot must of course be in
harmony with its physical navigation capabilities—control should steer it only
into areas that it can cope with. Often, the specification what a particular robot
can and cannot handle physically and in terms of control is left at least partially
implicit.

In this section, we will make more explicit the specifications of the autonomous
driving capabilities of three different robot-plus-control systems. We will see that
this leads to characterizing three different implementations or groundings of what
may be labeled the affordance of navigability.

2.1 Navigability as Free Space in 2D

Our first example is a fast (up to 3.5 m/s) indoor robot, as described in detail
in [12]. The robot is shown in Fig. 1, left.

As described in [12], its cruise control consists of a simple free-space seeking
mechanism: Using very simple fuzzy rules operating on every single beam of a
horizontal laser scan, it is determined in which direction is a “virtual roadway”
with sufficient clearance (to set the heading), and how far away the nearest ob-
stacle, if any, is in this virtual pathway (to set the velocity). As the involved
calculations are utterly simple and the scanner delivers 180◦ scans with 1◦ res-
olution at 77 Hz, fast speeds as 3.5 m/s can still be safely controlled in areas
where, at least from time to time, space may be wide open.

Fig. 1. The Kurt3D robot, images from [12]. Left: The robot platform. During driving,
the 3D laser scanner, which is tilted downward in the image, is kept in horizontal
position. Right: The “virtual roadway” used for setting velocity and heading. See text
for explanations.
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Fig. 2. Navigability in 3D for two different robots, applying the same criterion for
their respective sizes, rendering from simulation. The simulated Pioneer in front and its
bounding box fits under the table-tops; except for the table-legs, the area is completely
navigable. The LISA robot (here the base platform with its correct sizes but without
additional rigging, except for the navigation sensors) has table-top height, so it can
navigate only in the relatively narrow aisles.

In the context of affordances viewed as relations between an individual and
its environment, note that the definition and calculation of the virtual pathway
does of course respect the width of the robot. Then what does this robot consider
navigable, and what are the assumptions behind it? Like in many indoor lab
robots, it is assumed

Space is navigable iff it is unoccupied in the virtual roadway.

This implies, in particular, that no overhanging objects exist for collision out of
scan plane height, and that a sufficiently flat floor continues ad infinitum, unless
framed by an obstacle perceivable in scanner height.

2.2 Navigability as Free Space in 3D

In the ongoing research project LISA [2], a robot platform of about desktop
height with an additional manipulator on top is required to navigate safely in
a populated lab environment. This includes tables, desks with drawers, wheeled
office chairs, and other everyday objects. Part of the robot’s task is to transport
liquid samples. Therefore, collision with any object must be avoided under all
circumstances. On the other hand, the floor is plane and flat with no steps or
dents, just like in the 2D case of the Kurt3D robot before.

Under these requirements, free space in some scan plane is, of course, insuf-
ficient for navigability: We need to make sure that collision is avoided over all
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points of the robot surface. Given that we don’t have to care about the floor, we
assume

Space is navigable iff it does not intersect the robot’s bounding box
in 3D. Additionally, accessibility may be required: The part of space in
question is connected to the current robot pose by a path through navigable
space.

Again, like in the 2D case, navigability of some area of space may differ with
respect to different robot individuals, as their bounding boxes may differ. In
this interpretation, it is similar to the configuration space of a navigating robot;
this similarity is owed to the example of navigability, not to the concept of
affordances. Note that an affordance is something in the robot’s perception,
whereas the configuration space is objectively given. In particular, it is possible
to change the interpretation of navigability in a given robot (if the designer
knows what he or she is doing), but it is not possible to change the configuration
space just by an act of decision.

Technically, the required 3D geometry information about the environment is
calculated on the LISA robot from small laser scanners mounted right above
base plate height and pointing upward at an angle. The data fusion takes some
time, but given that the velocity has to be small, in particular in the vicinity of
objects, the required calculations can all be done online in real time. Figure 2
visualizes the practical difference in navigability of space for the LISA robot (or
rather, a planning version of the bare navigation platform) and a Pioneer-type
robot in simulation; the physical LISA robot is currently being built.

2.3 Navigability as Afforded by a 3D Surface

Out of flat lab floors, navigability depends, in addition to the absence of ob-
stacles, on the geometry and physical structure of the ground in relation to
the robot’s undercarriage (wheel diameter, ground clearance, leg size etc.). This
becomes an issue, e.g., in a growing number of outdoor robotics projects.

A relatively mild example is an approach to determine drivability of surface
for an outdoor version of the Kurt3D robot; for details, please see [15]. The basic
approach, adapted from [18], is this: Owing to its 3D laser scanner, Kurt3D builds
incrementally a 3D geometry representation of its environment in the form of a
scan point cloud; an example of a single scan is given in Fig. 3, left.

In a 3D scan, you can determine a sequence of scan points in the same az-
imuthal direction in rising vertical angles. If the angle between the cartesian
projections of two subsequent measurement points is sufficiently low, then the
second point is classified as a ground point. By connecting triplets of sufficiently
close ground points (possibly in different azimuthal directions) to triangles, single
ground points are enlarged to a ground surface; Fig. 3, middle, gives an example.
Note that the ground surface need not be plane, but just “sufficiently plane”, as
determined by a threshold value of the allowed angle between subsequent points
in ground determination.
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Fig. 3. Finding navigable surface on an outdoor gravel path scene; figure imported
from [15]. Left : A single outdoor 3D scan. Note that the path is uneven. Middle: Areas
(triangles) between neighboring surface points all labeled drivable are shaded in blue.
Note that the area in front is very dense with surface points, which are all labeled
drivable. Note second that there are some disconnected patches of surface points in
and behind the path shoulder. Right : View into the model from the same virtual view
point as before, but with the next scans along the path registered. Sufficiently large
areas sufficiently dense with drivable surface points are filled with blue. (Again, the
area in front is completely drivable.) Note that the next scan has been taken too far
away from the first to connect the drivable surface areas, so some of the objectively
drivable path remains unlabeled here for lack of point density.

The time required to compute this is marginal, consisting of elementary calcu-
lations on local data. In particular, it is negligible compared to the time required
to register neighboring 3D scans, which, in turn, is small compared to the ∼ 5 s
required to record a 3D scan in the current version of Kurt3D. Navigability is
handled quite explicitly here. In full detail, we have the following assumption:

Space is navigable iff it corresponds to a part of surface labeled driv-
able in the respective 3D scan, and the robots’s bounding box positioned
there does not intersect with points in the 3D scan. Again, accessibility
may be required in addition.

2.4 Uses of Navigability

It is no artifact to be concerned about navigability, as can be seen in other work
in the literature. As online processing of 3D geometry information is recently
coming into play in robotics, it is natural to care about it. [18] is an example;
we borrow the term navigability map from [8] (where it was called traversability
map).

Reliable online determination of navigability under challenging conditions had
to be pushed to some extreme in the DARPA Grand Challenge [7]. Consequently,
a large part of the design effort of participating teams has gone into designing
the sensor configuration and the respective algorithms for road detection (given
that the Grand Challenge requires following some desert road rather than driving
cross country). See [17] as an example.
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Fig. 4. Tough instances of navigability decisions. Photos from the RoboCup Rescue
competition, Osaka, Japan, 2005.

Navigability may even be more of a challenge in current RoboCup Rescue
competitions [13], where part of the task is to navigate across extremely cluttered
and ragged areas. Fig. 4 gives an impression. To our knowledge, there is no work
explicitly in this context on determining navigability automatically. The reason
is that current robots are mostly tele-operated in competitions and that the
emphasis lies currently on physical maneuverability rather than autonomous
control. So it is in fact up to the operator to decide about navigability, based
on what he or she perceives on the remote user interface. Anyway, the setting
presents a challenge for determining navigability, which will have to be done
autonomously in the end.

Turning from these somewhat exotic examples back to mundane settings, note
finally that differences in navigability in different robots have very practical
consequences. Consider path planning. Standard methods work on 2D maps,
see, e.g., [16, Sec. 6.2.1] and tools available in [1]. Planned paths are executable
only if this map is in fact a 2D projection of the robot’s navigability map; if
navigability in free space in 2D is all that is needed for a particular application,
the two map types would coincide.

Fig. 2 has introduced an environment where considering 3D information does
become relevant: Starting from identical positions and heading towards iden-
tical target positions, the two robots may have to plan and follow completely
different paths, or there may even be no executable path for the LISA robot,
whereas the Pioneer may safely execute one. Fig. 5 gives an example for this
environment where different robots have to find different paths, based on their
different navigability maps.

3 Discussion

Then what does all that tell us about using affordances in robot control? Ob-
viously, all cited work, including our own, has been done without affordances
in mind for the respective robots, and there is no point in re-labeling existing
control code as providing this and that affordance for this and that robot. So the
answer to the question in the title of this paper is of course: No! But the concept
of affordances, as exemplified by navigability in the previous section, could help
us in another way write better robot controllers.
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Fig. 5. An example for differences in navigability for different robots in the identical
environment. Top: The problem is to drive from the shown pose to the target location
right to the chair by the tables. Bottom left: The Pioneer robot shown in the top
image may go straight below the tables. In light blue is the space momentarily perceived
as navigable. Bottom middle: The taller LISA robot finds the direct path blocked (by
the table-tops). Bottom right: After some exploration, the target position becomes
part of perceived navigable space.

There is a recent trend in robotics to augment classical occupancy maps or
geometry maps with certain semantic categories. This has been called semantic
mapping, e.g., in [14], and it bears many resemblances to the classical AI problem
of scene understanding or recognition [10, Sec. 16.6], to recent work on cognitive
vision [5], and to symbol grounding [11] in full generality or in its more modest
variant of perceptual anchoring [6].

Navigability maps, as presented in the previous section, are instances of se-
mantic maps, if these are defined as geometric maps that augment the geometric
information by labels of data in the map [14, p.2] – the labeling here being in
terms of affordances like “navigable”. Interestingly, this label is attached to no
segmented object, but to part of the environment, namely, to space nearby that
appears to be navigable according to the (mostly implicit) navigability defi-
nition. For the historically minded, this seems to resemble Gibson’s statements
that perceiving an affordance does require no object classification (and therefore,
no prior segmentation).

Also somewhat in Gibson’s spirit, navigability is a relation between robot
and environment that is defined in terms of action on the robot’s side. In happy
contradiction to Gibson’s view, making a local navigability map out of recent
perceptions does of course have a gist of classifying parts of the environment,
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or of reifying a perceived relation into a classification, to use the term from
knowledge representation.

What happens here is this: The robot designer has typically put much effort
into making very fast the data processing that leads to the decision “navigable”
or not for the particular robot – or graspable, pushable, kickable, whatever the
robot’s purpose in life requires. By reifying the response of these carefully tuned
perception processes, a small constituent of a symbolic scene description is gen-
erated. This generation runs on-line on-board the robot, and it comes practically
for free, given it is done anyway in the robot control. In a nutshell, we are solving
an instance of the symbol grounding problem here en passant, the symbol being
the rerified robot-environment relation “navigable”. Given that symbol ground-
ing is known to be one of the deep, big, and hard AI problems: Why is it so easy
here?

The answer is: We have turned the symbol grounding problem upside down
(or upside up insofar as it was upside down before). Rather than attempting to
recognize a given symbol in the sensor data, we have started from some sensor
data processing that our robot can do efficiently and reliably, as its inner control
cycle relies on it, and we have then labeled its result with a telling symbol, e.g.,
navigability.

Is this cheating? No, as we don’t claim that the robot has “invented” some
new concept by itself – all creativity and insight remains on the robot designer’s
side.

Is it good for something? Yes, if you accept (like all the researchers in semantic
mapping appear to do) that symbolic environment models may help improve
robot performance, communication, robustness and engineering, then a symbol
like navigability appears to be as good as others – maybe even better, as it is
closely connected with the robot performance. Our argument here is to build a
robot environment ontology using reified affordances, like navigability, as part
of the ground concepts. Other examples of environment categories for a mobile
robot might be

Recognizability: The presence of some minimal amount of reliable features
or a stable appearance for its particular sensor configuration and on-line
processing capabilities;

Speedability: The property of some area of being traversed with high speed
(high clearance and low curvature requirements permitting);

Odometribility: The property of some area (which has to be physically tra-
versed to determine this) of producing a low error for the used forward kine-
matic model on which odometry is based (high grip, low curvature needs)

Many more of the same spirit are envisable. Clearly, an environment ontology
using such concepts would be different from one based exclusively on human-
centered concepts. But note that these concepts are well-defined, given that
they rely on the algorithms and calculations that are part of the human-made
robot design. They offer themselves as a basis for an inter-individual part of a
domain ontology (which will also normally be human-made): Assuming every
robot has its own implementation of these environment categories based on the
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respective affordances, any higher-level symbolic theory in terms of them will
then be grounded in the individual representations as the affordances induce.
For example, based on a reification of the navigability affordance into a predi-
cate Navigable with the respective agent and the perceived navigable region as
arguments, we can use the following inter-individual axiom

Navigable(agent , region) ∧ In(loc, region) → Canmoveto(agent , loc)

for deducing that agent can move to location loc (assuming the intuitive mean-
ings of all terms invented here). Note that the Canmoveto predicate naturally
involves the agent. In harmony with the navigability affordance, it has to be
agent-dependent, since it allows for different agent-specific implementations of
the underlying action – may it be driving, walking, crawling, or whatever. The In
predicate is agent-independent, of course, representing a general spatial relation.
(It may be necessary or useful to give the Navigable and Canmoveto predicates
another argument for time or situation, as they may be time-varying. This is
out of the scope of the simple example here.)

There are singular examples in the literature where properties like the ones
named have been used for tackling particular problems in robot control; for ex-
ample, something similar to speedability has been used in [3] for improving the
estimation of the time needed for completing a list of delivery tasks. Environ-
ment theories or ontologies using such reified robot-environment relations, whose
individual grounding comes nearly for free in every individual robot controller,
do not seem to exist yet.

4 Conclusion

So it does not help a robot navigate to call navigability an affordance – not too
surprising. However, every efficient robot control system includes highly tuned
sensor data processing modules whose purpose it is to perceive within short
control cycle times particular robot-environment relations that are necessary for
the robot’s intended function: navigability has been the running example for
such a relation in this essay.

It may or may not be in Gibson’s spirit to call these relations affordances.
Anyway, their reifications seem to offer some potential for a particular form of
symbol grounding in robot control – in fact, the grounding is given, all that
needs to be done is define fitting and useful robot domain theories or ontologies
making use of the respective concepts. We have no such robot domain theory or
ontology yet. We are just convinced they would make sense.
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Abstract. Previous research has shown that human actions can be
detected and classified using their motion patterns. However, simply
labelling motion patterns is not sufficient in a cognitive system that
requires the ability to reason about the agent’s intentions, and also to
account for how the environmental setting (e.g. the presence of nearby
objects) affects the way an action is performed. In this paper, we develop
a graphical model that captures how the low level movements that form a
high level intentional action (e.g. reaching for an object) vary depending
on the situation. We then present statistical learning algorithms that are
able to learn characterisations of specific actions from video using this
representation. Using object manipulation tasks, we illustrate how the
system infers an agent’s goals from visual information and compare the
results with findings in psychological experiments. In particular we show
that we are able to reproduce a key result from the child development
literature on action learning in children. This provides support for our
model having properties in common with action learning in humans. At
the end of the paper we argue that our action representation and learn-
ing model is also suitable as a framework for understanding and learning
about affordances. An important element of our framework is that it will
allow affordances to be understood as indicative of possible intentional
actions.

1 Introduction

There has been increasing interest in recent years in the development of systems
that are able to recognise human actions. Our goal is to develop such systems
for use as part of a cognitive system such as a robot assistant. Such a robot
requires the ability not only to recognise human actions with objects, but also
to learn to recognise new actions. Moreover, a truly flexible robot needs to able
to characterise actions so that it can distinguish what is an essential component
of the action, and what is superfluous. One way to achieve this is to separate the
high level intention of the human in acting to achieve the goal from the precise
low level movements of body and objects required to achieve that intention. In
this paper we present a model containing just such a division.
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In this paper we assume that our primary source of information is visual, the
robot must be able to learn about and recognise actions from video sequences.
There are a number of existing approaches for learning and recognition from
video sequences. Probabilistic graphical models such as Bayesian Belief Net-
works [4], hidden Markov models (HMM) and their extensions [10,5] are one
class of approaches already widely used to encode, detect and label patterns
of trajectories and motion vectors (often in an image space or on a 2D ground
plane). However, labelling motion patterns alone is not sufficient to reason about
the agent’s intentions, or to understand how the shape of an object, and the en-
vironmental setting affect the way an action is performed or what its results
are. This leads in turn to the issue of affordances, which we think of as features
that are easily computable functions of images, and that reliably indicate a pos-
sibility for an intentional action, and perhaps allow us to modulate or control
that action. In this paper we will not show how to learn affordances, but we
will argue that affordance learning needs to be integrated with learning about
actions.

In this paper, we develop a cognitive vision system designed to be part of a
robot system that will interact with a human agent who manipulates objects
on a table top (e.g., “grasping”, “pushing”). Object manipulation is consid-
ered to be goal-directed and we have developed a probabilistic graphical ac-
tion model that explicitly represents the causal links between the agent’s goals,
its hand movements, and the scene structure. Such graphical structures allow
us to factorize features computed for a given sequence into hand motion fea-
tures and environment state features. During the course of manipulative ac-
tions that achieve a goal state gi (which is pre-determined during the training),
there can be many hand manoeuvring acts a, which depend on the state s of
the environment. We generate training data by performing an action in differ-
ent environmental conditions. For example, to get to the state gi where the
hand is near the object, “reaching for an object” is performed while there are
varying number of objects nearby that may cause collision if the hand directly
moves to the target. From the training sequences, we learn the optimal fea-
ture sets with the most discriminative power and cluster them into classifiers
for a and s. We then learn the goal-specific action selection policy by con-
structing causal networks between a and s based on the estimation of causal
strength.

After training, an action goal gi is recognized in a Bayesian formalism by
accumulating the evidence at each time frame that the agent’s choice of hand
manoeuvre a matches with the choice one would make to achieve the goal gi

given the observed world state s. At the end of the paper, we present some
preliminary results for both action learning and recognition. We believe that
while HMMs and other pattern-based action representations may be used to
detect these actions, action representations that integrate goal-specific action
selection policies are more suitable to a cognitive system that requires reasoning
about intentions and object affordances [1].
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a) Frame 90 b)Frame 107 c) Frame 131

Fig. 1. Pushing steps in “Reach for-Push-Retract” sequence

2 System Overview

Figure 1 shows the environment that we use to train and analyze action se-
quences. It involves an agent, his hand, two inanimated objects, and a table top,
which are collectively called objects when no specific context is given. Objects
to be manipulated have approximately simple geometric shapes (e.g., rectangu-
lar) and distinctive color distributions. In this paper, we assume that actions of
our interest are perceived based on changes of 3D object poses and relations in
the scene. We capture actions with two static cameras (frontal and side views)
generating two synchronized video streams, from which rough estimates of the
3D object poses can be obtained by triangulation. We note that it is possible
to obtain 3D scene information with varying degrees of accuracy using other
camera configurations. For example, a 3D model of a textured object can be
partially reconstructed from a stereo rig using standard stereopsis or from a
mobile single-camera setting using Structure from Motion. For learning simple
object manipulation, we found that rough estimates of 3D poses are sufficient.

We consider an intentional action to be composed of action steps, each of
which is executed such that the precondition of the succeeding step is achieved.
In general, the goal of an action step is observable as one or more scene fea-
tures (e.g., object relations) that occur at the end of the step. For instance, if
the action were “push a box”, an agent may reach out his hand toward a box
(Fig. 1(a)), such that the hand becomes close enough to make contact with the
box. While there are various ways of making contact through grasping, touch-
ing, etc., in Fig. 1, he moves his hand further to touch the middle of the box
(Fig. 1(b)). Given that the hand is now in contact with the box, moving the
hand forward makes the box translate and change its location (Fig. 1(c)). We
are interested in developing a system that learns the models of these kinds of
actions. After training, the system should be able to recognize an instance of
actions in a different environment, and also predict what will happen at the end
of an action step. We also expect that the system could be used for exploratory
action planning in a robot.

Figure 2 shows the overview of our action analysis system. From the video
streams, we detect and track objects (including hands) to obtain 3D bounding
boxes and 2D shapes in each view. At each frame t, visual features of the scene
Ot are computed based on quantization of attributes related to object motion
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Fig. 2. System architecture

and poses, as well as inter-object relations. An action step (e.g., “reach for”)
is modeled using a causal graphical model (shown as a graph in a rectangular
box in Fig 2) consisting of three types of nodes (g an agent’s goal, a a hand
maneuvering act, and s a world state). Scene features O provide visual evidence
for recognizing these nodes as represented collectively by thick arrows towards
visual features. For example, features representing motion vectors of the hand
provide evidence for hand maneuvering acts. More complex features that repre-
sent relative locations and orientations of the hand, the target object and other
landmark objects provide evidence for a world state (or a snapshot of scene con-
figuration). The links between nodes in the graphical models illustrate how we
assume an agent acts during t = 0, ..., tgi to achieve a goal gi. At time t, the
agent chooses to perform a maneuvering act at. We assume that the agent not
only bases this decision on the desire to achieve the goal gi, but also considers
the environmental state st−1. For example, while trying to reach for an object,
the agent also needs to avoid collision with other objects. As a result of at, st

changes to st+1. This process is repeated until the relevant part of the world
state st

gi
satisfies gi, at which point the agent switches to another another ac-

tion to achieve goal gi+1. The network of goals (NG) above the boxes shows
various possible human behaviors, in which a human acts to achieve one goal
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after another. For instance, an agent may reach out his hand for a mug (i.e.,
reachfor), and then touch the top part (touch2). At this point, if the agent
moves his hand further, the mug will lean forward (tilt1) due to the fact that
the contact point is high. Alternatively, if the agent touches the middle of the
mug (touch1), the mug may be pushed away (push1).

Our action recognition algorithm is based on a Bayesian formalism, in which
probability distributions are defined over all possible acts, environmental states,
and action selection policies for a given graphical casual network gi (shown in
the box). Across time frame t, we gather and combine the evidence for gi by
computing P (at|Ot) and P (st|Ot) and combining them with P (at|st, g

i) and
P (st+1|st, at). In Section 4.3, we describe how to learn the structure and pa-
rameters of the gi network. While not the focus of this paper, the system also
learns to expand the NG ontology for sequences of actions from the individually
learned action models.

3 Detecting and Tracking Objects

Our approach to modelling a hand that is performing certain actions such as
picking up a mug is based on the 3D trajectories and change of orientation of
objects during the course of action. This section explains our two-view (frontal
and side) object tracking system, where our goal is to track and reconstruct 3D
bounding boxes of objects using two calibrated cameras. We assume that typical
views of all objects (e.g., hand, mug, milk bottle) that may appear in the scene
are known. This allows us to learn object-specific color distributions and to make
assumptions about shapes.

Our tracking algorithm begins by tracking objects in each view independently
based on Particle Filtering (PF) [6]. In both views, hand and mug are represented
as an ellipsoid blob with 5 parameters, and the milk bottle as a rectangular
blob with 5 parameters. These 5D variables constitute the object state spaces.
In PF-based probabilistic tracking, the probability distribution over the object
state space is represented by point mass and can be propagated and updated
dynamically by a weighted resampling technique, allowing for accurate, on-line
modelling of the non-linearity and non-Gaussianess of the dynamics. An object
is tracked by finding the most likely state, where the likelihood of an object
state is evaluated based on color and shape outlines. The PF-based tracking
results are shown for the side view in Fig. 1. We successfully tracked all objects
throughout the video in spite of 2D rigid motion and a small change in scale and
color. However, tracking was not successful when the hand moved too quickly
and the system located the hand at the same location as the mug or the box
of tomato juice due to the similarity of color distributions or ellipse templates.
This problem can be solved by using a more articulated shape model at the cost
of increased computational complexity. Our probabilistic tracker has also shown
to be robust to partial occlusion, or instances where shape and/or color evidence
were not completely available.
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Given the contours of an object in two views, we compute the 3D pose by
projecting a 3D cone from the camera center over the 2D contour on the image
plane for each view. The 3D bounding box is then computed by intersecting
the 3D cones. At each time-frame t, we track all known objects i to obtain the
3-part object pose description : opt

i = (objId, objType, BoundingBox). We note
that the origin of a world coordinate is fixed at one of the table corners such
that the x-y plane is aligned with the table surface. As discussed in Section 4.2,
the world coordinate system provides a frame of reference (FOR) for computing
many features in the table top scene. Later, we also introduce an agent-based
FOR, constructed by aligning the y-axis of the world’s FOR with the vector from
the agent to a location that we assume the agent directs its attention to. One
pre-defined, natural attended location is the center of the table, but it could be
any object of interest. Figure 3 (a) shows the 3D tracking results of hand and
box in “push a box” sequence. The dots and the polygons are, respectively, the
projection of the centroid of the hand and the bottom surface of the box on
to the world x-y plane. We notice that while the tracking of object centroids is
relatively reliable, the reconstruction of the 6 planes of the 3D bounding boxes
is highly sensitive to the errors from the 2D view-based object detection (as
can be seen from the noisy blue polygons). Such 3D tracking errors are one of
the major issues in action detection, where by a probabilistic action recognition
framework that combines various sources of evidence (especially from top-down)
and averages out errors across time frames can offer an optimal (or near optimal)
solution.

4 Learning Intentional Actions

4.1 Object Representation

In section 3, we represent an object by a color and shape based appearance
model that is useful for tracking. To learn actions, more abstract representation
is needed, which may require high-level segmentation of an object into parts.
In this paper, we propose to segment object regions to allow localization of
motion patterns on object surfaces, as well as the distribution of contact points
of the hand and the object, which can be useful for understanding action and
object structures. We first compute the principal axis of symmetry (AS). The
blob is segmented using n control points cpi, i = 1, ..., n, which are uniformly
sampled along AS . For each cpi, a line is drawn across AS to partition the blob.
In Fig. 3(b), a line is drawn across cp1, segmenting the bounding box into 4
segments. For each segment, we compute various local shape features such as the
average length of cross section, the curvature of the outline, and the distribution
of velocity vectors. Other local 3D information may also be included. We describe
object features in greater detail in Section 4.2

4.2 Features

Given the 3D tracks and view-based object representations, we compute various
features useful for analyzing the agent’s behaviors. Each feature is a real value
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Fig. 3. a) Tracking of hand and box in “push” sequence. b) Segmented-2D blob rep-
resentation (n = 1) and motion vector distributions. c) Hand states.

(between 0 and 1), computed as a response to a Gaussian receptive (G-receptive)
field that corresponds to a quantized attribute of the tracked entities. We orga-
nize features into four groups: F = (fu, fh, fhu, fuv), where h refers to hand, and
u and v refer to two different objects. In the following, subscripts p and m refer
to pose and motion attributes.

– Object features (fu): The state of object u is described by motion features
(fum) and pose features (fup). For each segmented-blob, we quantize the
distribution of motion vectors in each segment by computing its responses to
nine G-receptive fields (Fig. 3(b)). These features provide information about
motion patterns on object surfaces. Pose features of an object are computed
from the 3D object orientation relative to the world’s FOR. We project the
principal axis of the 3D bounding box onto the vertical and horizontal planes,
and compute the responses of the projected vectors to eight directional G-
receptive fields that correspond to the prototypical directions similar to those
shown in Fig. 3(b).

– Hand features (fh): We model a hand as a gripper, as we are interested in
pose features (fhp) related to approaching directions and opening angles. The
approaching direction of a hand is computed from the deepest defect point
of the convex hull of the outline of hand region. Otherwise, the principal axis
of the hand region is computed. The gripper’s direction is then quantized in
the same way as object orientation. Using three G-receptive fields, we also
quantize the gripper’s opening angle to be either minimal (e.g., when only
the back of the hand is seen), average and large as illustrated in Fig. 3(c).

– Hand-object relational features (fhu): To describe the relative position of h
to u, we construct a graded discretization of the 3D space around u based
on three G-receptive fields with the mean distance at: μ1 = ru + rh, μ2 =
sep(u)/2, and μ3 = sep(u), where ru and rh are respectively the radius of the
smallest ball containing the 3D bounding box of u and h, and sep(u) is the
minimum distance from u to other objects (v). The distance dhu between the
centroids of h and u is then computed and applied to these three distance
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G-receptive fields. We also compute the change of dhu as being positive,
negative and zero. Also, the 3D directional vector from h to u is projected
on the agent’s FOR, and applied to eight directional receptive fields.
Features related to the contact areas of h and u include the shortest distance
between the outlines of the gripper and object, and the spatial distribution
of the contact region (computed as the normalized overlap region of h with
the segmented blob of object u). For grasping direction, we compute the
angle between the gripper’s direction and the principal axis of the object
and measure its responses to the eight directional G-receptive fields.
For relative motion features, we compare the velocity vector of h (velh) to
the directional vector from h to u (velh,u). by computing the responses of
the angle between velh and velh,u to eight directional G-receptive fields. If
u is moving, we also compare velh to velu in a similar fashion, but replacing
velh,u with velu.

– Object-object relational features (fuv): For object-object relations, we com-
pute the relative poses (fuvp) of a pair of objects and exclude multi-object
relations. Similar to the hand-object relative pose features (fhup), we con-
struct a graded discretization of the space around object v. The distance and
direction from u to v, change of distance, and contact features are computed
and applied to the appropriate G-receptive fields.

4.3 Goal-Based Probabilistic Action Model

The number of features computed for an action sequence can be very large and
we represent the same features in various ways using different frames of reference
(e.g., world’s, agent’s and object’s FORs). In a scene consisting of four objects
(agent, hand, and two objects), there could be at least 415 features per frame.
However, typically only a small number of features are goal-relevant, and there
also exists dependencies among them. Taking advantage of this fact, we construct
a compact action model for robust recognition.

We propose to model goal-based actions in a Bayesian framework that allows
for statistical reasoning in a graphical structure that explicitly represents the
dependency between hand movement a, world states s, and goals g (as illustrated
in Fig. 2). For simplicity, we assume that there is only one intentional agent and
that the agent chooses at to execute from a set of all possible acts n(a) based on
P (at|st−1, g

i), a probabilistic action selection policy. As a result of at, the world
state st changes to st+1 according to P (st+1|at, st). This section first describes
how to recognize an action, given these action models. Later, we describe how
to detect goal-invariant features and learn action models.

Action Recognition and Goal Inference. In a particular environment,
there can be many goals gi ∈ G, and one of the observer’s task is to infer
gi from the agent’s behavior. Let O1...T be a time series of observations, where
Ot = (fh, fu, fhu, fuv)t is the set of features computed for the scene at frame t.
By applying Bayes’ rules, one can compute P (gi|O1...T ) � P (gi)P (O1...T |gi) as
follows.
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P (gi|O0...T ) = P (gi)
∑

a1...T

P (O0...T |s0...T , a1...T )P (s0...T , a1...T )|gi) (1)

= P (gi)
T∏

t=1

∑

at

P (Ot|st, at)P (st, at|st−1, g
i)P (O0|s0) (2)

=P (gi)P (O0|s0)
T∏

t= 1

∑

a t=A

P (Ot|at)P (Ot|st)P (st|st−1at)P (at|st−1, g
i) (3)

In Eq. 1, the likelihood is marginalized only over possible maneuvering acts,
as we only keep track of the most likely state sequences, which can be estimated
at time T . Equation 2 is derived based on the assumption that 1) at depends
on st−1, and 2) given st and at, Ot is independent of s and a at other time
frames. Equation 3 is derived by 1) expanding P (st, at|st−1, g

i) according to
the structure in Fig. 2, and 2) the assumption that features produced by st are
independent of at and vice versa. Also in Eq. 3, A is expanded to be ai

j ∈ n(ai),
where n(ai) are the set of all possible maneuvering acts associated with gi.
Similarly, st can be expanded as si

k ∈ n(si). In general, we assume that the
state transition is deterministic, and P (st|st−1at−1) can be disregarded, when
comparing gi and gj. An action can be recognized by its associated goal gi that
maximizes maxi P (gi|O0...T ).

To recognize a sequence of actions (e.g., (gi, gj)), we propagate the probabil-
ities of actions along the network as
P (gigj |O0...tij ,...T ) = P (gi|O0...tij )P (gj |gi)P (gj |Otij+1,...T ), where tij is the time
frame in which the goal switching occurs. An optimal tij can be found by maxi-
mizing maxtij P (gigj|O0...tij ,...T ). This paper, however, focuses only on the learn-
ing and recognition of individual actions.

Training. To compute Eq. 3, the system needs to learn P (O|ai), P (O|si), and
action selection policies P (ai|si, gi). In other words, we aim to learn, in Bayesian
terminology, hand maneuvering act models P (ai|O) and environment state mod-
els P (si|O). Our learning strategy is illustrated in Fig. 4(a), where by a separate
model is learned for each action. The network of three nodes in the box on the
top-left is a compact representation of those in Fig. 2. The three nodes provide
prior knowledge for factorizing features F into two groups: Fa and Fs. Features
in Fa = f ′

hm
, f ′′

hm
, ..., f ′

hum
, f ′′

hum
, ... are related to hand motion and used for

learning P (ai|O) (as shown by arrows from ai nodes to features in Fa) The rest
of the features Fs are world-state features and used for training P (si|O) (as
shown by arrows from si nodes to features in Fs). The dotted arrows from si to
ai indicate the need to learn causal networks for P (ai|si, gi).

Our learning technique is based on causal induction between binary variables.
Using a likelihood threshold (e.g., 0.5 for two quantization levels), we convert
all feature values (Ft) computed for the positive and negative training sequences
into binary features. We note that all training sequences are pre-segmented and
the negative training sequences are the sequences whose final states are not gi.
By slightly abusing the symbols, we represent the negative positive and nega-
tive training sequences as gi+ and gi−. The training starts by selecting optimal
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Fig. 4. (a) Learning action models from sequences of features (fh, fu, fhu, fuv). (b)
Generative causal network.

feature sets of ai with most discriminative power, and then constructing classi-
fiers based on the selected features. We compute the frequencies of each feature
appearing in gi+ and gi−. For fa ∈ Fa, we estimate:

P (fa|gi+) =
N(f+

a , gi+)

(N(f+
a , gi+) + N(f−

a , gi+)
(4)

P (fa|gi−) =
N(f+

a , gi−)

(N(f+
a , gi−) + N(f−

a , gi−)
, (5)

where f+
a and f−

a refer to the presence and absence of fa, and N(f+
a , gi+) refers

frequencies of fa being present in gi+ and so on. The feature fa is selected as
a salient feature for recognizing ai, if the ratio of P (fa|gi+) and P (fa|gi−) is
greater than δh, a threshold value. In our experiments, δh = 2 has been used.
This process is repeated for all features in Fa. After feature selection, we cluster
the selected features into n(ai) groups using co-occurrence as a criterion. That is,
features that are frequently present at the same time frame are grouped into the
same classes ai

j . A classifier for ai
j is constructed based on the Bayes’ classifier

assumption that all selected features f are independent given ai
j . P (O|ai

j) can
then be computed as the product of P (f |ai

j , which is used to evaluate P (Ot|at)
in Eq. 3. After learning the models for ai

j , we detect the salient features of si that
may have been used to determine the selection of ai

j. Similar to the learning of
ai

j , we perform feature selection and clustering, and learn the classifier for each
si

k in n(si).
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Finally, we learn the action selection policies P (ai|si, gi) by constructing
causal networks between ai

j and si
k (shown by dotted arrows). We compute

causal power (CP ) for each cause si
k (or c) and effect ai

j (or e) as:

CP =
P (e+|c+) − P (e+|c−)

1 − P (e+|c−)
(6)

CP corresponds to the probability that, for a case in which c was not present
and e did not occur, e would occur if c was introduced (or “sufficient cause”) [8].
The presence of a causal link is accepted if CP is higher than a threshold. As
have been shown by [3], CP also corresponds to a maximum-likelihood estimate
of the causal strength parameter wc in the noisy-OR parameterization of the
generative causal network shown in Fig. 4(b). In this causal network, when both
b and c are generative causes, and independently increase the probability of the
effect, which is similar to the case where multiple environmental states have
generative causal effects on the choice of action ai

j . The likelihood of the effect
given causes can be computed as:

P (e+|b, c; wb, wc) = 1 − (1 − wb)
b(1 − wc)

c, (7)

where wb and wc are CP ’s of b and c, respectively, and b+ = c+ = 1, b− = c− = 0
for arithmetic operations.

5 Preliminary Experiment Results

5.1 Recognition of Intentional Actions

We validate the effectiveness of our causal graph-based action models by recogniz-
ing four actions: “reach for (an object)”, “push”, “pull ”, and “retract (hand)”.
We implemented a total of 123 features, which are a subset of those described in
Sec. 4.2. Most features are derived from the projection of 3D trajectories and veloc-
ity onto the horizontal planes of the world’s and agent’s FORs. These features are
sufficient for recognizing our target actions due to the fact that the movement of
objects and hand occurs mostly along the table top. The structure and parameters
of each graph-based action model are learned separately using three positive and
three negative action sequences. Each sequence has approximately 20 data sam-
ples of hand maneuvering act instances. The learned action models are tested on
eight ground truth sequences (two for each action class).

At each video frame, we combine the probabilities of hand maneuvering acts,
environmental states and action selection policies, and compute the likelihood of
the actor performing a particular goal. The probabilities of the four action goals
are normalized such that they sum up to one. An action is correctly detected if
the most likely action goal matches the ground truth. We evaluate the effective-
ness of our action models based on 1) frame-by-frame detection rates, and 2) the
detection rate of an action goal given the observation of the whole sequences. For
frame-by-frame detection rates, we obtained the average detection rate of 84.6%,
85.7%, 90.9% and 90.9% for “reach for”, “push”, “pull ”, and “retract”, respec-
tively. In contrast to frame-by-frame detection, when probabilities are combined
across time frames using Eq. 3, we obtained a 100% detection rate on all test
sequences.
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Recognizing Actions in Continuous Videos. It is more natural for a robot
to observe various actions in a long un-segmented video stream such as
“Reachfor-Push-Retract” shown in Fig. 1. Figure 5 shows the frame-by-frame
analysis results of this sequence, which match with the ground truth, where by
“reach for” (solid) occurs during Frames 94 and 110, “push” (dotted) during
Frames 131 and 137, and “retract” (dashed) during Frames 141 and 150. The
likelihood of “pull” is never above 0.25 and not shown in the figure. During
Frames 111 and 130, the hand either pauses or pushes the object very slowly
so that none of the actions are detected. During frames 94 and 110 of “reach
for”, we notice occasional detection errors (sudden drops in probabilities), which
are caused by tracking errors typical of real video analysis. While the detection
of “reach for” can be improved as described earlier by combining probabilities
across time frames during the action using Eq. 3, the video needs to be segmented
appropriately. In our experiments, we rely on zero-velocity frames as segmenta-
tion points. When such conditions cannot be guaranteed, computational models
with dynamic time warping properties such as a HMM and its variants [5] can
be used.

90 100 110 120 130 140 150

0

0.5

1

Frame Number

Pr
ob

ab
ili

ty

reach for retractpush

Fig. 5. Analysis of “Reach for-Push-Retract”. The four color-coded graphs show the
probabilities of action goals.

Recognizing Actions with a Cluttered Scene. Figures 6 and 7 show a
more challenging scenario, where the scene is cluttered with multiple objects,
each of which is a potential target of interest. Humans can quickly perceive
that the agent first reaches for the green ball (object 1), pushes it, and retracts
the hand to the initial state. The agent then pushes and pulls the blue bottle
(object 2), and then attempts to pull the football (object 3). However, since
the blue bottle now locates between the agent and the football (and obstructs
the direct path), the agent needs to reach around it. This video shows that the
environmental setting can be dynamic and the agent needs to adapt his course
of actions accordingly. Variations in environmental settings can also affect the
learning and recognition of intentional actions, which we analyze in Sec. 5.2.

Action recognition results of the video in Figures 6 and 7 are shown by bar
graphs along the side of each frame. For each potential target object, we cal-
culate the likelihood (li = P (gi|O0Ṫ ) of the four actions (from top to bottom:
“reach for”, “retract from”, “push”, and “pull”) using Eq. 3. For a clear view
of the comparison of action recognition results across target objects, instead
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of normalizing the likelihood values per target object per frame as in Fig. 5,
we compute (nllmax − log(li)), where nllmax is the maximum value of negative
log-likelihood computed for the sequence. The length of bars varies according
to these values, whereby the longer the bar is, the more likely the action. For
motion-less frames with zero-velocity (i.e., action segmentation points), the bar
length is reset to the maximum. The bar length then decreases as time progresses
due to multiplication of probabilities. At each frame, for each target object we
highlight the bar with the longest length.

As indicated by the highlighted bars, most actions are correctly recognized
even when the agent needs to extend the arm around the obstacle (blue bottle)
to reach for and pull the football in Frames 278 and 305. The system, however,
fails to detect the “pushing” (Frame 182) and “pulling” (Frame 235) of the blue
bottle due to unstable localization of its 3D poses. We note that noise-level in
videos is not the only source of tracking errors. Our tracker can become unstable
for high-dimensional object poses (e.g., there are 5 free parameters for a box-
shape, 3 for a circle), which can be improved by increasing the number and the
quality of searches for correct poses at the cost of computational-complexity.

We also notice the lack of attention mechanism in our action recognition
framework. This results in interpretation of actions involving each target object
independently. In Fig. 7 at Frame 305, when actions are analyzed independently
the system also indicates that the agent is retracting his hand from the green
ball. While visual features for such interpretation may be present, they are most
likely suppressed by the fact that that attention is being given to “pulling the
football”. It has been widely known in neuroscience that an attention mecha-
nism drives human perception of complex object motion [9] We believe that an
attention mechanism also plays an important role in learning and understanding
intentional actions. It remains a research issue as to when and how perception
of hand movements and state configurations are selectively modulated.

5.2 Understanding Human Intentions

Recent research has indicated that infants as young as twelve months old are
able to interpret actions as means to goals and generate systematic inferences
to identify relevant aspects of the situation to justify the actions. To account for
such observations, Csibra et. al. [2] propose that one-year old infants maintain
teleological representations of actions which relate goal states, actions, and situ-
ation constraints to one another via the rationality principle. Although unable to
represent intentional mental states, counterfactual and fictional realities (which
are believed to develop at much later ages), teleological representations provide
explanations and predictions for the observed actions based on the principle
that goals states are realized by the most rational action available to the actor
within the constraints of the situation. By comparison, the links between three
node types (a, s, g) in our graphical representation of action, model causality
relations and play a similar role to the rationality principle in teleological rep-
resentations. This section demonstrates the use of our action models to explain
precocious understanding of goal-directed actions by one-year old infants.
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Fig. 6. Evaluating four actions on three objects at Frames 35, 76, 106 and 182
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Fig. 7. Evaluating four actions on three objects at Frames 235, 278, 305 and 328
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a) Habituation 1 b) Habituation 2 c) Test 1 d) Test 2

Fig. 8. The experimental events to test the understanding of goal-directed actions by
one-year old infants

We start by summarizing the findings from psychological experiments by Csi-
bra et. al. [2]. In these experiments, infants were separated into two groups.
Infants in one group were habituated to events depicted in Fig. 8 (a) (“jumping
over an obstacle”), and the other to events depicted in Fig. 8 (b) (“jumping over
nothing”). After habituation, they were shown events in Figures 8 (c) and (d),
and the looking time was measured. The results have shown that on average the
infants habituated to Fig. 8 (a) spent almost 5 seconds longer looking at Fig. 8
(c) than Fig. 8 (d). That is, they find the event in Fig. 8 (c) more incompatible
with their interpretation (or expectation). In contrary, the infants habituated to
Fig. 8 (b) spent an equal amount of time (around 1 sec difference) looking at
Figures 8 (c) and (d). That is, “jumping over nothing” is considered to be an
inefficient way to get to the end state and is represented as a movement pattern
executed on purpose.

Instead of modelling the “jumping over” actions, we train the action model
“reach for an object”. We collect eight ground-truth sequences as shown in
Fig. 10 and Fig. 11(a), where by 3D hand trajectories are projected on the
world’s x-y plane for clarity. The projected hand trajectories (shown as solid
lines) are marked with different numbers (e.g., 1,2,3) to indicate that they are
separate training instances. The beginning of the trajectories are marked with
triangles and the targets are shown by rectangles. We use six sequences to train
the models in two contexts, either with or without an obstacle. In a “no obstacle”
condition (Fig. 10(a)), we observe the hand move toward the target or make a
slight curve. In an “obstructed” condition, we observe curved trajectories around
an obstacle (obs) shown as a circle in Fig. 10(b). We use three negative training
sequences (e.g., “retract hand”, “push”) for both conditions.

Figure 9 illustrates how salient motion features are selected and associated
with a nodes after the training and how the causal strength between a and s
nodes is established. The grey nodes with two branching arrows at the bottom of
Fig. 9(a) are hand motion features, each of which indicates how the hand moves
(solid arrows) relative to the directional vector to the target (dotted arrows).
Since the hand either moves toward the target or makes a slight curve, the hand
motions corresponding to ai

1 and ai
2 are selected most often given the environ-

mental state si
1, as shown by the solid and dashed arrows from si

1 to ai
1 and ai

2
respectively. Other motion types (e.g., ai

3) that are the result of tracking errors
or random acts are associated with much less causal strength (shown in dotted).
The environmental state si

1 is associated with pose- and location-based features
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Fig. 10. Data sets for two training conditions

such as the distance to the target d(h, t) and the change of distance Δd(h, t).
Alternatively, when trained in an “obstacle” condition, si

1, s
i
2, s

i
3 are detected

to correspond to various types of feature orient(h, t, obs), each representing a
configuration of the directional vectors (h, t) and (h, obs). For examples, si

2 cor-
responds to the case where the direct path from h to t is obstructed by obs.
These environmental states influence different choices of hand acts as shown in
Fig. 9(b). For example, ai

3 (moving the hand sideways) is a preferred choice
when obstruction is present. We note that si

1 includes all cases where the angle
between (h, t) and (h, obs) is more than 90 degrees, as well as when no obs is
present.

We use the learned models to evaluate the likelihood of two test sequences
shown in Fig. 11(a) using Eq. 3. Both sequences are 20 frames long showing a
hand reaching for a target object without any obstacle. Figure 11(b) shows the
negative log-likelihood of the observed events (straight and curved tracks), given
the trained models of “reach for” (with and without obstruction).

As shown by the two bar graphs on the right of Fig. 11(b), based on the
model learned from events with the “obstruction” condition, the curved trajec-
tory is less likely (i.e., the bar labeled “curved” is higher), due to the lack of
environmental structure that would account for the non-straightness. This is in
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Fig. 11. (a) Testing sequences. (b) Recognition of two ways to reach an object: Straight
and Curved.

agreement with the results reported in [2], where by the infants who are habitu-
ated to the “jumping over obstacle” events indicate a sign of surprise, by looking
longer at “jumping over nothing”, as the jumping movement is un-accounted for.
When the test trajectories are evaluated by the model learned from events with
the “no obstruction” condition, the gap in the likelihood between the two paths
is reduced as shown by the two bar graphs on the left of Fig. 11(b). This is
because the system has been trained to associate the curved trajectories as an
action performed on purpose (against the rationality principle).

6 Conclusion

Our experiments have shown that a goal-based action model can be used for
classifying intentional actions effectively in a controlled environment. Arguably,
other action models such as coupled-HMMs [7] can also be trained to recognize
the sequences used in our experiments based on patterns of coupled-motion be-
tween hand and all potential target objects. However, we believe that recognizing
actions by action-selection policies enables a cognitive system to better reason
about environmental structures and human intentions. We have shown support
for it as a model that has some of the same properties as learning about actions
in infants. Still, there are other factors involving human learning about actions
that are not addressed in this paper.

First, our action representations are based on 3D spatial features of the scene
that are estimated using stereopsis. Extracting 3D scene structure reliably from
visual input is, however, known to be a difficult problem in computer vision and
there is a need for rigorous testing to see how robust our action analysis system
is against various levels of noise. Second, it is possible that action recognition
and understanding is based on different kinds of features to those used here. For
example, from the viewpoint of neuroscience features that are relevant to per-
ception of object and movement on the retinal images gradually become more
abstract (e.g., becoming position and scale invariant) along ventral and dorsal
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pathways in the primate cerebral cortex. Action representations that are based
on such features (abstract but view-based) would be more biologically plausible
than ours, but it is not clear how 3D information is induced from such represen-
tations. One hypothesis is that humans do not rely on precise 3D information,
but integrate information from other modalities (e.g. proprioception) to enable
both perception and action. Finally, perception of cluttered scenes containing
many objects of various shapes (such as in Figures 6 and 7) requires an atten-
tional mechanism. It would be interesting to investigate when and how attention
should play a role in action perception and learning.

Finally we turn to the issue of affordances. Affordances, on a reductionist view,
can be thought of as visually derived features that are strongly indicative of a
potential for action. Some may be merely conventional, some may concern sev-
eral objects, some static relations between objects, and others dynamic ones. On
the assumption that many affordances are learned by observation, one approach
to identifying affordances is to apply machine learning techniques to observed
sequences of action. This is our intended approach, building on the model of
action we have presented here. We aim to couple the learning of an affordance
(the visual features associated with the possibility of action) with learning about
actions in general. For us the benefit of a learned affordance in a robot system
will be for it to act as a computationally cheap short cut to identifying poten-
tial actions and complex sequences of actions. We suggest that the problem of
learning which visual features of a scene are associated with the possibility of an
action is in general the same as the problem we have solved in this paper: that
of learning which visual features of a sequence of scenes are associated with the
execution of an action. Of course, the types of features available to the learning
system will need to be broader. If we are interested in identifying whole range
of possible actions with an object or set of objects then we will need features
that describe surface shape. Extracting these from an image using current vision
techniques is no simple task.

In this paper we developed a representation of actions, and methods for learn-
ing using this representation that enable us to identify the specific visual fea-
tures associated with an action during its execution. Our approach, as with
many learning approaches to computer vision, is to extract a large number of
features automatically from an image or image sequence. Having gathered these
the system learns which visually derived features are indicative of an action
being performed. At the moment our system only learns about visual features
taken during the action course itself. The next step will be to show that it can
learn which visual features of a static scene prior to the action occurring can be
reliably associated with a particular action.
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Abstract. This paper proposes GrAM (Grounded Action Models), a
novel integration of actions and action models into the knowledge repre-
sentation and inference mechanisms of agents. In GrAM action models
accord to agent behavior and can be specified explicitly and implicitly.
The explicit representation is an action class specific set of Markov logic
rules that predict action properties. Stated implicitly an action model de-
fines a data mining problem that, when executed, computes the model’s
explicit representation. When inferred from an implicit representation
the prediction rules predict typical behavior and are learned from a set
of training examples, or, in other words, grounded in the respective ex-
perience of the agents. Therefore, GrAM allows for the functional and
thus adaptive specification of concepts such as the class of situations in
which a special action is typically executed successfully or the concept
of agents that tend to execute certain kinds of actions.

GrAM represents actions and their models using an upgrading of
the representation language OWL and equips the Java Theorem Prover
(JTP), a hybrid reasoner for OWL, with additional mechanisms that al-
low for the automatic acquisition of action models and solving a variety
of inference tasks for actions, action models and functional descriptions.

1 Introduction

Marvin L. Minsky stated 1986 in “The Society of Mind”: “we need to combine
at least two different kinds of descriptions. On one side, we need structural
descriptions for recognizing chairs when we see them. On the other side we need
functional descriptions in order to know what we can do with chairs” [1, p. 123].
These two kinds of descriptions mirror the bifocal perspectives of all agents:
the perceptual and the acting view. In the first one, objects are grouped into
concepts according to similarities in the sensory input like appearance or shape,
we call these a structural concept. The categories of the second are clustered
by similarities of their use or function and therefore, we call them functional
concepts. Even these two constructs seem orthogonal, there must be a mapping
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between them in our mind or otherwise we could not categorize things we see
into a functional concept like seats.

Functional concepts are based on the (typical) behavior of agents. Imagine,
which things we would categorize as seats for elephants as opposed to men, or
the meaninglessness of such a category for fish. Action models that describe the
preconditions and typical output of an action according to a class of agents are
essential for this type of descriptions. Functional concepts fit ergo perfectly to
planning tasks because of their relatedness to preconditions of actions.

In this paper we describe a knowledge representation language and a system
based on it, that is able to handle structural and also functional descriptions.
We exemplify the system by an information agent that performs no action itself,
but is capable to perceive actions of other agents and their environment as facts
within a given structural concept hierarchy. This suffices to explain the intent
and usage focusing on the main idea. The system could easily be utilized for
active agents.

To handle functional and structural descriptions we equip agents with GrAM
(Grounded Action Models) that provides means for automatically acquiring ac-
tion models and for reasoning about subsumption of individuals under functional
and structural concepts. GrAM provides the following principles.

1. GrAM is a representation language that uses OWL (Web Ontology Lan-
guage), a knowledge representation language based on description logics.
GrAM provides a basic ontology with GrAM:actions, GrAM:situations, and
GrAM:agents, as well as action models as additional entities. Domain ontolo-
gies can easily be adapted to use GrAM’s representational power. To apply
GrAM to a particular application domain, we import an OWL ontology and
assert that concepts in this ontology are specializations of GrAM:actions,
GrAM:situations, and GrAM:agents. Through these assertions, the domain
concepts inherit the properties of the respective GrAM concepts and GrAM
inference mechanisms become applicable to these concepts. It also provides
constructors for functional concepts in terms of action models.

2. GrAM represents action models as sets of Markov logic rules that correlate
situation and action properties with a probability distribution. Definitions of
action models can be explicit specifying the rule set extensional or implicit
specifying a set of executed actions and the situations that the actions were
executed in or that resulted from their execution.

3. GrAM provides a number of inference mechanisms for actions and their
models which allow for the automatic acquisition of action models, predict-
ing action properties, subsumption under functional concepts, assessing the
predictive accuracy of a model, etc. Stated implicitly an action model defines
a data mining problem that, when executed, computes the respective set of
prediction rules that is the explicit model.

GrAM is the only knowledge representation mechanism we know of that covers
action models together with the symbol grounding problem and reasons about
them in sophisticated ways. GrAM integrates data mining as a key inference
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mechanism and provides a seamless transition between action models and data
mining tasks and results. Resource intensive inferences are performed in a de-
mand driven and therefore resource efficient way.

GrAM is implemented extending the OWL Web Ontology Language. Actions
and situations are specified as OWL classes, action models are introduced as
new entities and the extended language offers new constructors for functional
concepts. To realize GrAM’s reasoning mechanisms we have extended JTP, a
hybrid reasoner for OWL, with additional reasoning mechanisms that allow for
the automatic acquisition of the explicit representation of action models and
solving a variety of inference tasks about actions and action models.

In the remainder of the paper we proceed as follows. The next section intro-
duces the representation of football games as our example application domain.
We give an overview for OWL and describe GrAM’s extensions including a basic
action ontology in section 2 as well as action models and functional concept con-
structors in section 3. By means of scoring chances we illustrate the strength of
GrAM’s representation language. GrAM’s inference mechanisms to handle these
terms are detailed afterwards in section 4. Implementational aspects contain a
short guidance, how to adapt GrAM into any agent system (see 5). An overview
of related work (6) and conclusions (7) complete this paper.

2 Representing Football Games

For the purpose of this paper we consider a particular application domain: the
analysis of games in simulated robot football ([2], [3]). Each year more than 30
research groups participate in a competition for simulated robot football teams
in the context of the RoboCup world championship. Each participating research
group programs a team of simulated football players that have, at a very abstract
level, fairly realistic perception and action capabilities. The competition games
are logged by the simulator writing the positions and motions of all players and
the ball, and the time stamped referee decisions such as offside and corner kick
into log files. The ball motion implied by the ball position data is segmented
into ball actions. Recognized ball actions are classified into shots, passes, and
dribblings. These data form the observations of a game that are used in this
paper.

Building models of ball actions in simulated football games is an interesting
research task for several reasons. First, these actions are in several dimensions
more realistic than models typically used in AI applications such as AI planning
[4]. The spatio temporal properties are often very important. Ball actions have
many different parameters: passes can be played hard or soft, deep or sideways,
safe or risky, played to different receivers, etc. The effects of actions are typically
affected by interactions and therefore highly situation-dependent. The outcomes
are typically nondeterministic and the actions have high probability of failing.
Many of these features are shared with other physical actions that are carried
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out by humans and animals. A consequence is that the appropriate modeling of
ball actions requires particularly rich representation means.

2.1 OWL (Web Ontology Language)

We represent and reason about actions and action models using an extension of
the OWL Web Ontology Language [5]. OWL is a knowledge representation lan-
guage based on description logics. The basic representational means are classes
and individuals, the subclass relationship and the properties of objects. Classes
define a group of individuals that belong together because they share some prop-
erties. The classes together with the subclass relationship form a specialization
hierarchy on classes: the ontology. Properties represent binary predicates, and
can be used to state relationships between individuals or from individuals to
data values. An example class definition is represented in section 2.3, figure 2
and 3 exemplify the assertions of individual facts.

The selection of description logics as representation language for structural
concepts is driven by mainly two aspects: structural and relational knowledge can
be naturally described and inference can be done efficiently. The particular use
of OWL has several advantages over other description languages. It is specialized
for ontologies in the web and proposed as a recommendation of the world wide
web consortium. The exchange of knowledge and the use of existing information
will become more and more important for all kinds of agents. For our demon-
stration domain a number of OWL ontologies are accessible through the World
Wide Web including football ontologies with information about football players,
teams, management, as well as time and action ontologies. We have also included
concepts of the upper ontology of openCyc (http://www.opencyc.org/), which
offers an OWL export, into our ontology.

As OWL is based on XML, taxonomies and logical expressions can be trans-
formed into hypertext documents for browsing customized using XSLT style
sheets. Comprehensive software toolboxes for processing OWL documents in-
cluding APIs and parsers like Jena are available. Editors such as Protege includ-
ing browsers for ontologies rendered as graphs like OntoViz ease the creation and
modification of OWL knowledge bases. Using these tools, knowledge bases and
action models can easily be published in the semantic web in human and ma-
chine readable form. Queries to GrAM can be stated in OWL-QL (OWL Query
Language) [6].

2.2 Football Ontology

Figure 1 shows an excerpt of a football ontology including the three key classes
ball action, player and situation. The graph displayed in UML notation shows
subclass relationships and the most important properties of actions, players and
situations. Subclass relationships are represented by arcs with hollow arrow
heads and properties by those with filled arrow heads. As already mentioned
the class hierarchy reuses concepts like PurposefulAction of the openCyc upper
ontology.
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Event

Action

doneBy
AtLeastPartiallyMentalEvent

CompositePhysicalAndMentalEvent
PurposefulAction

performedBy

PurposefulPhysicalAction

BallAction

velocity: {slow,intermediate,fast}
successful: boolean

direction: {left,right,...}
length: {short,middle,long}

Pass Dribbling Shot

Situation

PlayerSituation

shootingAngle: float
discreteShootingAngle: ...

defendersCount: int
savePassCount: int

possibleDribblingLength: float
teamPlayerCount: int

SomethingExisting

AgentGeneric

Agent

Player

GrAM:Agent GrAM:Action GrAM:Situation

startSituation

GrAM:startSituation

doneBy

GrAM:doneBy

Fig. 1. Excerpt of the ontology representing the football domain and its integration in
GrAM

The most important interactions between ball actions, situations and players
are the following ones. Ball actions are doneBy a player in a startSituation
that correspond to a PlayerSituation observed by the player closest to the ball.
Subclasses of ball actions are modelled as dribblings, shots, or passes. Ball actions
can be successful if and only if the team of the performer of the ball action keeps
possession in the resulting situation or that team scored a goal. In addition, a
number of parameters of the ball actions are shown as data valued properties
like the velocity, direction or length.

Situations are completely determined by the properties position, velocity, and
acceleration of the ball and the performing player. To reason about situations
effectively we use, however, additional user defined situation abstractions, such
as the distance of the ball to the goal (goalDistance), the number of possible
save passes (savePassCount), etc. These properties of (start) situations are typ-
ically much better correlated to properties of actions such as the action outcome
and are therefore needed to learn prediction models for these action properties
effectively.

Figure 2 and 3 show example situations in a simulation league game. Beside
an image of the scene the action and situation individuals are stated in terms of
the football ontology of figure 1.
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Player 10 passes to player 9.

Individual(ballaction256 type Pass
value(occurs [2536,2545]̂ Înterval)
value(byPlayer player10)
value(successful truê x̂sd:boolean)
value(length lonĝ x̂sd:string)
value(velocity fast̂ x̂sd:string)
value(direction right̂ x̂sd:string)
value(startSituation pS2536 10)

Individual(pS2536 10 type PlayerSituation
object: player10
position: penaltyAreaAway
defendersCount: 1
goalDistance: 16509.65
possibleDribblingLength: 1912.5471
savePassCount: 9
teamPlayerCount: 2
shootingAngle: 0.5218
discreteShootingAngle: tinyAngle)

Fig. 2. Situation in a simulated RoboCup game stated in OWL using terms of the
football ontology

Player 9 scores a goal.

Individual(ballaction257 type Shot
value(occurs [2545,2546]̂ Înterval)
value(byPlayer player9)
value(successful truê x̂sd:boolean)
value(length short̂ x̂sd:string)
value(velocity mediumˆ̂ xsd:string)
value(direction forward̂ x̂sd:string)
value(startSituation pS2545 9)

Individual(pS2545 9 type PlayerSituation
object: player9
position: penaltyAreaAway
defendersCount: 1
goalDistance: 7108.3555
possibleDribblingLength: 5535.4663
savePassCount: 5
teamPlayerCount: 0
shootingAngle: 6.122713
discreteShootingAngle: wideAngle)

Fig. 3. Shot at the goal and (successful) scoring chance for player9 stated in OWL

2.3 Defining Scoring Chances

There are a lot of other concepts in the football domain not represented in
the ontology excerpt. For the rest of this paper we focus on the concept of
scoring chances. This concept is obviously a subclass of situations. Stating which
situations belong to scoring chances in a general form is difficult because of the
high dependency of the definition in respect to the player skills. So a situation
could be a scoring chance for a professional player but not for a rookie.

In description logics it is straightforward to define successful scoring chances
i.e. situations that lead to observed goals if the definition is based on structural
concepts only. Let us look to a definition of successful scoring chances stated in
OWL. It would have the following form:1

1 We use just the abstract syntax in this paper and forbear from spearheading the
XML notation because of clarity, compactness and readability, the translation is
obvious indeed.
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Class
(

ScoringChance complete
intersectionOf

(

Situation
restriction

(

startSituation−1

allValuesFrom
(

intersectionOf
(

Shot
restriction

(
successful value(true)

) )))))

An instance of this class is stated in figure 3. In contrast to this compact def-
inition it is difficult or not even possible to incorporate also the unsuccessful
scoring chances under the concept. Scoring chances in their full meaning can
only be described in a functional way: they could be defined as the situations in
which some football players tend to shoot the ball and are likely to score if they
shoot. The wording already suggests a probabilistic notion of the concept and
we need action models, external to OWL, to be able to express intention and
typical behavior of players and thus cover the whole meaning of scoring chances.
This definition task will illustrate GrAM’s abilities as our running example for
the rest of the paper.

3 Representation Language

Because of the limited representational power of OWL in respect to action mod-
els we need additional language constructs. GrAM’s representation language
constitutes an extension of OWL by a basic ontology and constructors for ac-
tion models and functional concepts, which are determined by the behavior of
some agent. To equip the representation language with action models, some basic
concepts and relations are necessary in advance.

3.1 GrAM’s Basic Action Ontology

We consider actions as state transitions analogously to the situation calculus [7].
The class Action is therefore related to a start and end situation. Also an action
is supposed to be done by some agent as an intended event. Figure 4 visualizes
the three key classes and their relationships with the namespace prefix GrAM.

The specific concepts of the domain of interest have to be linked to these
classes by stating a subclass or equivalent class or property relationship to be
processable by GrAM. This is already done for our football ontology shown
in figure 1, the respective classes and relations are highlighted in the excerpt
illustration.

ActionAgent SituationdoneBy
endSituation

startSituation

Fig. 4. The ontology representing predefined concepts and relations
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3.2 Action Models

The intention or typical behavior of an agent or agent group is represented by
an action model. More precisely it corresponds to the correlation between prop-
erty values of an action and its start situation with a probability distribution.
The probability distribution is mostly necessary because of a not fully observ-
able or modelled environment and the nondeterminism of action outcomes. The
correlation i.e. an action model is represented as a set of Markov Logic rules.

Markov Logic. Markov logic [8] is a first order predicate logic language where
probabilities can be assigned to formulas. Probabilities are stated as weights
that specify how strong a contradiction to the individual formula diminishes
the worlds probability. Markov logic has the expressive power to represent a
wide range of probabilistic representations that can be learned using statistical
relational learning methods including decision and regression trees. We will state
our action models explicitly in Markov logic. A Markov logic rule set for an action
model can be written as

rulej = conditionj
probj−−−→ conclusionj .

Thus, rules for predicting properties of actions that are contained in the rule set
of an explicit action model have the following form:

∀ba. startSituation(ba, sit)
∧ condsituationPropertyk (sit) ∧ . . .
∧ condsituationPropertyn (sit)

prob−−−→ actionPropertyi (ba, valuei) ∧ . . .
∧ actionProperty(ba, value)

The rule states that if situation sit is the enabling situation of ba and satisfies
the conditions for the given properties cond(sit) then the action ba will typically
have the declared property values with a probability of prob. Predictable action
properties contain also the type of an action i.e. the membership to a class.

Explicit Definition of Action Models. The set of rules of action models
predict the characteristics of actions in situation specific ways. We define for
example an action model exampleAM consisting of just one rule:

∀ba. startSituation(ba, sit)
∧∀x.distanceToGoal(sit , x) ∧ x ≤ 10000)
∧∀x.defendersCount(sit , x) ∧ x ≤ 1)
0 .8−−→ successful(ba, true)

It describes the shot behavior and states that a shot would succeed with a
probability of 80 percent in a situation, where the shooter is closer than 10.000
mm to the goal and there is at most one defender in the direction to the goal.

The condition startSituation(ba, sit) is contained in every rule and needs not
to be assigned explicitly. In abstract syntax the definition would look like the
following:
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ExtensionalActionmodel(exampleAM
withRule( Rule( Body(

restriction(distanceToGoal lessThanOrEqual(10000))
restriction(defenderCount lessThanOrEqual(1))

Head(restriction(successful value(true)))
withProbability(0.8)))

Implicit Definition of Action Models. The explicit definition of action mod-
els can be quite cumbersome because the behavior has first to be analyzed to
extract a rule representation. Also even one agent could show different behaviors
depending on the environment like the performance of an expert player versus
a beginner differs ¿from its performance against an opponent of equal strength.
GrAM allows an action model to be defined implicitly by a set of actions and
their start situations. This set is assumed to contain observed examples of the
behavior that should be described by the action model. The action model is
asserted to hold for this set i.e. the model describes the correlations in the given
set correctly. To focus only on some aspects of the correlation the situation and
action properties can optionally be narrowed down by enumerating only the
relevant.

Suppose we want to define the scoring chances for a particular player, say
‘player9 ’. The specialization of this situation class requires a model of the typical
shot behavior of player9, the respective definition of the implicit action model
has the following form:

IntensionalActionModel(typicalBehavior9
forAction(restriction(doneBy value(player9)))
observable(goalDistance position teamPlayerCount

savePassCount possibleDribblingLength defendersCount)
predictable(type successful))

This model named typicalBehavior9 represents the correlation between the
stated observable situation properties on the one side and the type of action
that is chosen and its outcome (successful) based on all observed actions of
player9 (denoted by forAction) on the other.

3.3 Functional Concept Definitions and Action Related Concepts

GrAM allows to construct specific subclasses of Situation functionally according
to an action model and a set of actions. A subclass, constructed by this way,
contains the start situations of the action set for which the given action model
predicts the respective action property values correctly according to a specified
threshold. This threshold declares the minimal probability for the truth of the
Markov logic rules combined with the action and situation values as facts. So
the subsumption of a situation individual under a specific situation class has
no probability distribution but is assigned only to a boolean value. That is fun-
damental to integrate the constructed concept into the description logic which
does not deal with probability distributions in its inference. For this reason
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GrAM has the strength to handle nondeterministic action models on the one
side and to include concepts based on these models in a description logic like
OWL on the other side.

Other action related concepts offered by GrAM are agent class constructors
and predictions. Agent classes describe agents that show the same behavior as
represented in a given action model for a specified set of actions. A threshold
for minimal probability as in the definition of situation classes is also obligatory
and is used with the same semantics.

Predictions are primarily used in queries to find out which action property
values would be typical for a given behavior in a specified situation.

Using the functional situation class constructor we are able to define scoring
chances for player9 as the class of situations that would lead with a probability
higher than 70 percent to a successful shot according to the typical behavior of
player9 (defined in section 3.2). The situation class constructor has the following
form:

SituationClass(ScoringChance
byActionmodel(typicalBehavior9)
forAction(Shot restriction(successful value(true)))
minProbability(0.7))

To examplify the use of agent class constructors as an additional functional
description, we define the concept ExampleAgent as all agents showing a specific
behavior namely exampleAM, which was introduced in section 3.2, for actions
in the first half of a football game:

AgentClass(ExampleAgent
byActionmodel(exampleAM)
forAction(ActionsFirstHalf)
minProbability(0.6))

GrAM offers also constructors for predictions, which make only sense as incom-
plete definitions in premises of queries and are introduced therefore in the next
section 4.

4 Inference

GrAM offers not only a representational framework for action models and related
concepts but also mechanisms to automatically infer explicit representations of
action models, subsumption for related concepts, and predicted values.

The subsumption of individuals under situation classes is inferred by appli-
cation of Markov rules with a higher probability than the given threshold to
start situations of the given actions and by comparison of the produced action
property values with the asserted ones. If they are equal, the situation individual
is assumed to be a member of the situation class.

The situation shown in figure 2 would be classified as scoring chance for
player9 because there exists an applicable Markov Logic rule of action model
typicalBehavior9. For example,
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∀ba. startSituation(ba, sit)
∧∀x.distanceToGoal(sit , x) ∧ x ≤ 17203.732)
∧∀x.defendersCount(sit , x) ∧ x ≤ 1)
0 .8−−→ type(ba,Shot)

∧ successful(ba, true)
applies to this situation and has a higher probability than the specified threshold
of 0.7: The closest player to the ball in the considered situation is not further
away than seventeen meter from the goal and there are no defenders towards
the goal, so player9 would perform a successful shot in this situation.

Membership of agent individuals to an agent class is inferred in a similar way.
An agent belongs to an agent class if it conforms to the behavior specified by the
respective action model in all considered actions. The inference process ensures
this by verifying that the property values of all actions of the specified set done
by the agent equal the ones, generated by application of the action model rules
with higher probability than the threshold.

The predictions are inferred also via application of Markov Logic rules. A
generated action with predicted properties and the probability of the used rule
is appended to the prediction individual and can be queried. Only those values
are generated that are predicted by an applicable rule.

Say we want to examine, how player9 would act in a specific situation named
hypoSituation, where player8 failed to score. First, an incomplete definition of a
prediction individual is made:

Individual(examplePred Prediction
byActionmodel(typicalBehavior9)
forSituation(hypoSituation))

Then, the most likely values together with their probability can be received. An
OWL-QL query to achieve the outcome would be stated as follows:

(and (toAction examplePred ?predAction)
(withProbability examplePred ?probability)
(successful ?predAction ?outcome))

The variable ?outcome would be bound to true or false according on which
Markov logic rule of the action model typicalBehavior9 would be applicable for
hypoSituation to predict the outcome. The probability of the prediction will be
assigned to ?probability, ?predAction contains just a generated name identifying
the predicted action.

For all deductions concerning action related concepts the inference process
needs an explicit representation of the action model. The Markov Logic rules
are therefore needed to be available also for implicitly defined action models.
GrAM is able to extract the rules out of implicit definitions of action models
by solving a data mining problem. All observed action and start situation pairs
form the training data for that problem. The inference process first builds a
matrix filled with all predictable action and respective situation property val-
ues. Decision tree learning [9] is applied to these data if action properties are
discrete. Because we can not assume the action properties to be uncorrelated
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in general, the prediction of action property values is not learned separately for
every property but at once. The learned decision tree is flattened to rules that
belong to every possible path in the tree, taking the conjunction of the inner
nodes as condition and the leaf as conclusion. The corresponding probability
value is computed by multiplying confidence and support of the classification in
the leaf (which can also be transformed to Markov logic weights). For continuous
action properties GrAM infers the rules by REPTree regression tree learning [10]
and analogous transformation of the resulting tree.

The mentioned inference mechanisms in combination with a calculus for OWL
are sound in respect to the defined semantics of the concepts. Completeness,
however, can not be ensured because of the rule generation process by data
mining, where a lot of rule sets that holds for the training data exist but only
one specific is mined.

We provided the introduced inference mechanisms by extending a theorem
prover for first order logics called Java Theorem Prover (JTP). JTP is an object-
oriented modular hybrid reasoning system implemented in Java [11]. It has a
simple and general reasoning architecture consisting of modules called reasoners.
The modular character of the architecture makes it easy to extend the system
by adding new reasoners. JTP is equipped with special purpose reasoners for
OWL expressions and knowledge bases, satisfiability in interval temporal logics,
and others.

We have added inference mechanisms for action models in the form of rea-
soners. Namely we have equipped JTP with reasoners for solving data mining
tasks, prediction by data mining models, and subsumption of individuals under
functionally defined and action related concepts.

All inferences in GrAM including the generation of the explicit rule form are
computed in a lazy manner or on demand. That is the respective data mining
tasks are only solved if the respective explicit model has been queried directly
or indirectly.

5 Work with GrAM

Starting from an existing knowledge base of an application domain which con-
tains an ontology and facts, GrAM offers an easy way to build an information
system based on this knowledge, that can be integrated into agent systems. The
implemented system architecture of GrAM is shown schematically in figure 5.
To adapt a domain to GrAM, the domain ontology has to be linked to GrAM’s
action ontology (see the arrow marked with 1 in figure 5). The facts representing
the observed agent behaviors and additional knowledge can be transferred with-
out modification (see arrow 2). Facts and extended ontology form the knowledge
base of an information system, which offers a web service interface to answer
queries. The answer is inferred by GrAM’s inference mechanisms including data
mining and Markov rule application (see arrows 3 and 4). The web service inter-
face via SOAP over HTTP offers a flexible interface independent of programming
languages and platforms.
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Fig. 5. GrAM’s system architecture

We implemented a servlet as graphical user interface to GrAM, that can be
used for human interaction with GrAM. A screen shot of a web browser showing
the query input mask is depicted in figure 6.

6 Related Work

Our research on GrAM is part of a larger research effort in which we investigate
computational models of embedded intelligent systems that “know what they are
doing” [12]. Having action models that cover a wide range of behavior and its
rationale is a necessary capability of such systems. Research on action modeling
has been mainly performed in the area of reasoning about action using first-order
predicate and nonmonotonic logics [13]. Those representations have only covered
a small subset of the models proposed here. Symbolically specified action models
yield the so-called symbol grounding problem: assigning meaning to symbols
based on perception and action mechanisms of agents. While symbol grounding is
not addressed in this research branch GrAM proposes a solution for it consisting
of implicit and explicit action models.

The acquisition of models of physical actions has so far received surprisingly
little attention. Oates et al. [14] have learned models of action effects expressed
in the sensor data space. Pasula et al [15] learn probabilistic Strips like rules
from examples. Stulp and Beetz [16] use learned performance models in order to
optimize chains of abstract actions. This branch of research does not focus on
the representational issues of model acquisition.
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Fig. 6. Web interface to GrAM

We know of no other practical knowledge representation mechanisms that
cover the range of action models and reasons about them as GrAM does. As well
the combination of structural and functional descriptions was not be addressed
before. Also, GrAM’s integration of the data mining mechanism and its seamless
transition between action models and data mining tasks and results is, as far as
we know, novel.

7 Conclusions

In this paper we have proposed GrAM as an extension of a knowledge represen-
tation system that makes action models, their acquisition and reasoning about
them as an integral part of the knowledge representation system of an intelli-
gent agent. GrAM can be used for various domains where the behavior of agents
needs to be embedded into the reasoning apparatus of the system. Functional
descriptions are adapted to the behavior of agent groups to learn a structural
representation of the same concept.

In a companion research project we use GrAM to represent and reason about
a range of action models including causal and outcome models, action selection
models, parameterization models, derived models, and others [3]. We believe that
the representation languages that are capable of grounding action models and
acquire them through data mining will be of key importance in the development
of embedded intelligent systems that “know what they are doing”.
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We are also starting to apply GrAM in the context of autonomous robot
learning. For this purpose GrAM is integrated into the robot learning language
ROLL [17] and used to make robots “action aware” [18]. GrAM will furthermore
be used in context-aware intelligent environments, especially in the kitchen sce-
nario where we try to achieve models for everyday activities [19,20].
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Abstract. In our targeted scenario, humans can flexibly establish joint object ref-
erence with a robot entirely on the basis of their own intuitions. To reach this aim,
the robot needs to be equipped with the kind of knowledge that can be matched
in a cognitively adequate way to users’ intuitive conceptual and linguistic pref-
erences. Such an endeavour requires knowledge about human spatial object ref-
erence under consideration of object affordances and functional features. In this
paper we motivate our approach by reviewing relevant insights gained in the field
of Spatial Cognition, and we discuss the suitability of our robotic system to incor-
porate these findings. In our context, affordances are visually perceivable func-
tional object aspects shared by the designer of the recognition module and the
prospective robot user or instructor.

1 Introduction

Human-robot interaction centers on events in which human instructors expect robots
to perform desired actions on specified objects [Zhang and Knoll, 2003]. A shared goal
across contexts is therefore to establish joint reference to one or several objects present
[Moratz et al., 2001]. This goal can be achieved successfully in one of several ways: for
example, instructors could specify exact metric measures, knowledge about all poten-
tially needed objects could be implemented or successively taught to the robot, or users
could be provided with a list of object names or class IDs that the robot can understand.
However, each of these methods comes with its own problems. In more complex set-
tings or open scenarios, and whenever generic tasks need to be formulated, the limits of
predefined referring strategies become obvious. Generic tasks need to be specified by a
set of rules comprising complex robot commands.

An everyday example involving a future service robot is the following. The robot
could be taught by an untrained user to set the table as follows: Each cutlery piece
(knives, forks etc.) is placed at the side of the plate which corresponds to the side where
the human hand is that will use the tool. If pasta is served, the fork would be on the right
side of the plate, otherwise it would typically be on the left side. If these principles are
taught to the robot as a set of functional rules, the robot can generalize to a new scenario
in a sensible manner. For example, if a guest for some reason can use only one arm, all
cutlery needs to be placed at the corresponding side. Also, culturally diverse habits can
easily be accounted for. Such generic rules can be formulated by linguistic functional
propositions as instruction representations.

The problem addressed in this paper is how to let the service robot acquire coarse,
underspecified knowledge from the environment, which is functionally motivated

E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 63–76, 2008.
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[Hois et al., 2006] and matches natural human strategies of spatial reference. Since we
consider it essential to avoid the use of forced unnatural communication methods, we
present a cognitively inspired approach to establish joint object reference using only
simple, natural linguistic means. Our approach makes use of natural object classifica-
tion by an affordance-based recognition module. In our context, affordances are func-
tional aspects shared by the designer of the recognition module and the prospective
robot user or instructor. We start by discussing the general motivation for this approach
via pursuing a classification and characterization of generalizable human-robotic in-
teraction scenario types and features associated with them. Then we outline relevant
findings on natural and function-based human object reference. Finally we present the
current status of our robotic system and elaborate the affordance-based approach.

2 Linguistic Human-Robot Interaction

In the first subsection we motivate and structure different settings/domains for linguis-
tic human-robot interaction. The second subsection sketches our empirical approach
and results concerning users’ conceptual and linguistic strategies when interacting with
robots.

2.1 Contexts and Motivation for Linguistic Human-Robot Interaction

The contexts for human-robot interaction can be classified with respect to the spatiotem-
poral coupling between instructor and robot. We sketch here a classification into three
levels.

In the simplest variant, which can be called “on-line instruction scenario”, the human
and the robot share the spatiotemporal context. This may be the case either by being co-
present, or by radio transmission of video or laser range scans. In these cases, the human
can control the robot directly; the robot works in a tele-operated fashion. In these settings
direct control means like joysticks or graphical interaction can achieve near optimal re-
sults even without the need for linguistic modules [Tsuji and Tanaka, 2005]. However,
spoken commands can enhance the graphical interface in a multimodal manner. Consid-
erable progress in this direction is currently documented by major research projects such
as COSY, e.g., [Kruijff et al., 2007], and COGNIRON, e.g., [Spexard et al., 2006].

On the second level, called “in advance instruction scenario”, a human instructs a
robot to perform in a remote place where the specific details are not known, and no
further ad-hoc communication between the robot and the human is possible after the
instruction. This scenario involves underdetermined qualitative knowledge about spatial
arrangements [Habel et al., 1999]. In this case, the instructed robot has no perception
of the relevant parts of the scene at the time of instruction [Webber et al., 1995]. Here,
the fact that natural language can express underspecified knowledge can be used as an
advantage. A gesture or pictorial interface would deliver details to the robot which are
possibly not part of the knowledge available at the moment of the instruction and could
lead to serious inconsistencies between the command and the scene/configuration in
which to execute the command.
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Finally, a long term goal of linguistic human-robot interaction is to enable naive (un-
informed) users to program mobile robots in an intuitive manner [Lauria et al., 2001].
This idea encompasses “generic scenarios”, our third level, in which commands are in-
tended to be applicable across diverse contexts after they have been issued in a general
fashion. For example, an airport security officer could program a mobile robot how to
behave with respect to unattended luggage via a command to the robot such as “ask the
person on the closest seat whether this piece belongs to somebody”. Here, the meanings
of ‘closest’, ‘seat’, and ‘person’ have to refer to generalizable categories that the robot
can interpret across contexts. Spatial prepositions like ‘closest’ are of special interest
in those scenarios [Moratz and Tenbrink, 2006], [Moratz, 2006] because they can be
applied solely on the basis of spatial features, without presupposing knowledge about
further situational details. Furthermore, an expression like ‘seat’ should be interpreted
functionally, i.e., based on the affordances that a seat offers for the user, rather than
based on specific perceptual details that may vary widely across contexts.

While our approach is motivated by the third, generic level of instructions, the actual
scenarios we (like most other approaches) use to explore natural human-robot interac-
tion empirically take place on the first level (on-line, face-to-face scenarios). This makes
sense because a comprehensive linguistically enabled robot system capable of interpret-
ing generic instructions would also need a simple direct linguistic control module. Also,
users might like to start their experience with a linguistic robot interface in simple joint
attention scenarios before moving into generic instructions. Here we address the ques-
tion of how the findings at this stage of research can be generalized towards application
in the more advanced scenarios.

2.2 Investigating and Modelling Features of Linguistic Human-Robot
Interaction

In our empirical approach, we use simple human-robot interaction settings to establish
how speakers react when confronted with a robot with certain functionalities that they
do not know the details of [Fischer, 2003]. Such a situation resembles a future scenario
in which human users expect a service robot to function based on their intuitions con-
cerning how to instruct the robot, rather than based on a need to read a complex and
detailed manual.

In a typical setting used in our work [Moratz and Tenbrink, 2006], several similar ob-
jects are placed on the floor together with the robot, and the experimental participants’
task is to make the robot move towards one of these objects. This scenario captures
the specific need to establish joint object reference, which is a crucial aspect of many
generalizable complex situation types.

A crucial element of this approach is the realization that speakers’ strategies when
addressing a robot are based entirely and systematically on their concepts of the
robot. Such concepts are not always directly accessible; for example, asking the
users about their expectations may often only lead to vague generalizations. But
speakers display their concepts of the robot by their linguistic choices [Fischer, 2006].
To begin with, users’ utterances reflect their previous expectations of the robot. The
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features of human language directed towards artificial communication partners has
been shown to differ systematically from that of language used in human to human
communication [Doran et al., 2001]. This phenomenon is related to long recognized
principles of recipient design [Sacks et al., 1974]. In our scenario, participants seemed
to deduce the robot’s behavioral functionalities from the robot’s communicative ca-
pabilities; they did not appear to expect the robot to be able to do something that
it could not communicate about [Fischer and Moratz, 2001]. Of course, this contrasts
with the actual circumstances, since speech and behavior modules may be quite un-
related in a robot. Gradually, throughout the discourse, the users adapt their concepts
(as reflected in their language) to the actual situation and the experience they have
gained [Fischer and Moratz, 2001, Amalberti et al., 1993]. Accordingly, our data show
that users tend to re-use syntactic and conceptual schemas after experiencing success
with certain kinds of constructs [Moratz and Tenbrink, 2006]. Users try out a number
of different strategies and then rely systematically on positive experience.

From these findings, the following observation can be gained, which is crucial for
our approach. Even if users start out by expecting the robot to have fundamentally
different functionalities as compared to humans, they can adapt quickly to the robot’s
actual features. Therefore, users confronted with a robot that is able to recognize objects
on the basis of their function will soon be able to utilize this specific capability to a
great extent. This expectation includes the humans’ ability to realize, and adapt flexibly
to, the robot’s limitations: some objects will be recognized easily by the robot, while
others are more difficult due to situational factors such as partial occlusion, scanner
resolution limitations, or less easily detectable object features. Accordingly, speakers
can use jointly identified objects for future reference, also in order to refer to other, more
difficult objects, based on their relation to the identified ones. Spontaneous instructions
such as “Go to the (unknown) object in front of the (known) chair” then represent a
natural way of communicating.

Another important insight supported by our empirical findings is that the users’ in-
structions do not need to rely on spoken language. Typing text into an interface is nowa-
days common and widespread; many people are quite content to use reduced keyboards
such as those available on mobile phones. Therefore it can be expected that this does
not impose undue cognitive load on the user. Also, our findings show that - contrary to
what might have been expected - users’ written instructions did not differ fundamen-
tally in any crucial respect from their spoken instructions to robots in our face-to-face
scenario [Moratz and Tenbrink, 2003]. For the system and for the success of the com-
munication, using typed language has considerable advantages. Current speech recog-
nition systems work well, but still not well enough to avoid recurring misinterpretations
and failures to understand the spoken input. These can then lead to severe miscon-
ceptions concerning the robot’s capabilities and functionalities on the part of the user
[Moratz and Tenbrink, 2003], since users may fail to realize that it is simply the level of
speech recognition that is responsible for miscommunication. Especially with users that
are not familiar with technological details, it is essential for the robot to react suitably
to all input the user gives, which is only possible if speech recognition problems are
ruled out.



Affordance-Based Human-Robot Interaction 67

3 Human Spatial Object Reference in Natural Settings

As stated above, our focus for successful human-robot communication centers on joint
object reference as a crucial element across scenarios. This section summarizes earlier
findings from the literature and from our own research that are relevant for this endeavour.

In a situation involving a configuration of various objects, how do speakers refer to
them? Trivially, if only different objects are present, speakers can use class names. If
joint reference can successfully be achieved by this method, no further investigations
are necessary. Another possibility is to rely on obvious object features such as colour,
shape, or size. This option is only available if the interlocutors share the ability to rec-
ognize these features unproblematically in an object. Speakers then choose a feature for
reference that is best suited for establishing contrast [Herrmann and Deutsch, 1976].
If these methods fail, it is feasible to rely on descriptions of spatial object relations.
For example, speakers can make use of proximity or distance terms such as near, far
[Tenbrink, 2005]. These terms are appropriate if the intended object is closer to, or far-
ther away from, the object it is specified in relation to (that is, the relatum) than other
objects are. Also depending on the spatial situation, other terms such as on, in, at, be-
tween, amid may or may not be applicable. These terms rely on the presence of one or
more other objects (relata) situated in a certain kind of spatial and/or functional relation
to the intended object (from now on called the locatum). For example, a locatum be-
tween two relata would be situated within a spatial region delimited by the positions of
the two relata. A locatum in a relatum entails a relationship of functional containment
involving location control; the relationship may or may not involve geometric enclo-
sure in addition [Coventry and Garrod, 2004]. All of these options are therefore fairly
situation-dependent and cannot be applied in all cases.

In the case of the so-called projective expressions, the case is different. Terms like
left, right, in front of, behind can be applied in almost any situation involving the spa-
tial position of an object: one of these terms will always be applicable for a spatial
description. However, projective terms are more complex than other spatial expressions
in that they involve not only a relatum but also an origin, a position from which a vi-
sual perspective or (view or movement) direction is derived. Here, the notion of spatial
reference systems comes into play [Levinson, 2003]. In the case of the so-called in-
trinsic reference systems, the origin is conflated with the relatum. An example for an
intrinsic description is, “The ball is to my left.” Here, although the perspective is not
mentioned explicitly, it can be assumed that the speaker uses her own view direction
to describe the ball’s position in relation to herself. Objects with intrinsic sides can
also serve as the relatum and origin of an intrinsic reference system. In relative refer-
ence systems, the origin differs from the relatum. A speaker could say: “The ball is to
the left of the table from my point of view.” However, perspectives are typically not
given explicitly. The perspective used is typically that of the interlocutor if the speaker
wishes to facilitate the task for the listener or if actions are involved on the part of the
listener [Herrmann and Grabowski, 1994], both of which is the case in human-robot
instruction tasks. In fact, our speakers do consistently employ the robot’s perspective
[Moratz et al., 2001].

Now, the question remains how speakers choose which objects they can rely on in
order to describe the position of other objects; what determines the choice of a suitable
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relatum? In his well-known approach to cognitive semantics, Talmy proposes that they
do so based on a number of systematic principles, most of which pertain to the features
of the objects available for reference [Talmy, 2000]. Crucially, while the locatum is
an object with unknown spatial properties (since the aim is to describe its position in
relation to the relatum), the relatum “acts as a reference entity, having known properties
that can characterise the primary object’s unknowns” [Talmy, 2000, p183]. Typically,
therefore, the relatum will be less movable or more stable than the locatum, it will be
larger and more easily recognizable, more immediately perceivable, and so on.

If the positions of the interactants present in a scenario are stable, they can be used
as relata (as in a robot instruction like “Go to the object to your left”). However, as
discussed in section 2.1, this may not always be the case, especially if a spatial relation
should be applicable generically. Then, it will be more feasible to use salient, already
recognized objects as relata for the identification of a new locatum. This can happen in
one of two ways: speakers can use a relative reference system involving the perspective
of one of the interlocutors, or they can employ an intrinsic reference system based on
the object’s intrinsic features. But only the intrinsic case can truly be used generically,
since this implies that the actual presence of a person is not required, or (in the case of
a generic robot instruction) the robot’s position does not need to be specified. Here, the
object’s intrinsic or functional features and axes become crucial, since it is only possible
to say that something is “in front of the table” (without an additional perspective) if the
table has an intrinsic front.

In order to determine an object’s internal regions, several different aspects come into
play, most of which are not physically determined but rather based on human cognition
and behavioural conventions [Herrmann, 1990, p120]. In animate beings the part con-
taining perceptual organs defines the intrinsic front. In other cases, typical direction of
motion and orientation to the observer play a role [Miller and Johnson-Laird, 1976, p
400f.]. Thus, arrows have an intrinsic front because of their associated direction of mo-
tion, and a desk’s front is defined by its usual orientation to a person. Intrinsic tops are
dependent on an entity’s characteristic orientation on the vertical axis. Often, functional
features come into play that are derived from humans’ characteristic uses of the objects.
For example, the front side of a television is the side that humans look at when watch-
ing TV, and the back side of objects is often the one that is less accessible. Functional
aspects are also decisive for the determination of the spatial regions for which spatial
terms are applicable in context [Coventry and Garrod, 2004]. Whether an umbrella is
referred to as being over a person depends on where the rain comes from. Furthermore,
there is some evidence that intrinsic reference frames are preferred in situations involv-
ing functional features of (familiar) objects, while relative reference frames are more
likely in non-functional situations [Carlson-Radvansky and Radvansky, 1996].

From these findings, we can conclude the following generalizations in relation to our
human-robot interaction scenario. Spatial reference using projective terms is a flexible
method of establishing joint object reference especially when other methods fail or
when generalizable options are called for. Corresponding to their natural preferences,
speakers will often use the robot’s position as relatum, employing intrinsic reference
systems. If this is not feasible because of the general circumstances (for example, in
generic instructions) or because a suitable spatial relation cannot be straightforwardly
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described, it becomes crucial to rely on salient objects within the scenario as relatum,
using a relative reference system (employing the robot’s perspective in non-generic
situations) or an intrinsic reference system using the object’s intrinsic features. In the
latter case, which stands out as the best option available for generalizable reference,
object recognition using natural object categories and the identification of functional
features becomes essential. In the following, we turn to the technological requirements
involved here.

4 Object Recognition Using Natural Object Categories

The problem of object recognition has a long tradition in computer vision research.
One approach is to perform a model-based interpretation in a priori known environ-
ments. There are fast algorithms that use CAD models for the recognition of rigid ob-
jects [Lanser et al., 1997]. The CAD models are used to generate 2D views (multi-view
representation) which are compared with features of the perceived scene. Articulated
objects can be represented as a composition of rigid components which are explic-
itly connected by specific kinematical constraints, e.g., rotational and/or translational
joints [Hauck et al., 1997].

Approaches that use precise geometrical prior knowledge of objects are designed to
unify a currently sensed object with an object already known. A more complex task
is to categorize unknown, novel objects by interpreting them with respect to semantic
concepts (e.g. “chair”, “door”). Solutions for this problem would be very helpful in the
context of human-robot interaction. A cognitive theory (“Recognition by Components”)
about how humans find natural categories from visual input was proposed by Bieder-
man [Biederman, 1987]. It partitions objects into a set of 3D primitives (geons) that
are generalized cylinders. A semantic object category comprises a prototypical relative
spatial arrangement of specific geons.

Such a semantic interpretation demands the model-driven segmentation into volu-
metric parts. The recovery of volumetric shape descriptions from range data is central
to the approach of Dickinson, Metaxas, and Pentland [Dickinson et al., 1997]. The tar-
get representation in this approach is a qualitative vocabulary of 3D parts (generalized
cylinders) and their qualitative relative orientation. An alternative approach is the use
of super-quadratics with parameterized global deformations [Solina and Bajcsy, 1990]
[Leonardis et al., 1994] [Wu and Levine, 1994]. However, the above mentioned ap-
proaches do not perform a semantic interpretation. The context of these systems typ-
ically is the task of determining grip positions for manipulators. The ambitious goal
of assigning natural categories to novel objects for human-robot interaction was first
approached by Louise Stark and her group [Stark and Bowyer, 1996].

Our approach (described below) is very similar to Stark’s function-based recognition.
It is based on an idea which originates from Gibson [Gibson, 1979] and is developed
further by the geo-informatics research community [Kuhn, 1996] [Jordan et al., 1998]
as well as theories of language understanding [Gorniak and Roy, ]. Objects are
characterized by the “services” (affordances) they offer a user. As an example, stairs
are characterized by a ratio of height to width of their steps that allow for climbing them
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comfortably [Mark, 1987]. These affordances are often closely related to the spatial
arrangement of their components. This is the link to the component based approach of
Biederman [Biederman, 1987] mentioned above. In our approach we start by investigat-
ing which feature-detectors are powerful enough to detect invariant features of object
categories which are important for humans in office scenarios. Therefore we first focus
on the design of the feature detectors and only aim to add learning capabilities to the
system in a second step.

Based on the insight that objects have certain forms resulting from their functions,
object shape can be used to help identify the object’s function and ultimately the object
itself. We developed an object recognition system that can handle the input data, render
it, and perform our object recognition algorithms. Details of an earlier version of the
system have previously been presented in [Wünstel and Moratz, 2004]. Figure 1 shows
an experimental scene together with the scanning equipment. The scene consists of two
chairs, a waste paper basket, and a briefcase. During a tilt pass of its pan-tilt unit the
scanner generates a point cloud of the scene (cf. figure 2).

Fig. 1. Scene together with the scanning equipment on the left

In our scenario free-form objects in an office environment have to be identified. In
the current version, we mainly focus on the concept of the supporting plane. When
the function of an object part is to support a potential other object, this part has to be
parallel to the ground.

A specific difficulty for our system is based on the fact that it perceives the scene
from one perspective only (see figure 3). A supporting plane which is occluded too
much cannot be detected reliably anymore. We therefore chose an anthropomorphic
perspective (the scanner is placed in a similar height as a human head) to minimize this
problem.

The three-dimensional surface points resulting from the laser range image are sepa-
rated into up to four layers (see figure 4 for images of the layers). We then project each
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Fig. 2. Rendered range data - the identified objects and segments are colored

Fig. 3. Scene nearly from the perspective of the scanner

layer into a two-dimensional plane. Within this plane we can now robustly segment
object parts by using standard methods. These segments, representing object parts in
certain heights, are then used to identify the whole three-dimensional object.

The approach performs best for objects having strong functional constraints at the
system’s current perceptual granularity (e.g. desks, tables, chairs, open doors, and
empty book shelves). However, smaller objects on the ground (e.g. waste paper bas-
kets, briefcases etc.) can be detected but not classified reliably by our current system.
These objects can however be referred to by a human, and furthermore they can be
referred to by reference to other objects in the environment (e.g. “the briefcase to the
left of the chair”) [Moratz, 2006]. This utterance could be interpreted in various ways,
depending on the underlying reference system. In the case of figure 3, it represents
the robot’s point of view in a relative reference system. Since the robot is able to
detect the chair’s intrinsic features, an intrinsic reference system is equally possible.
In [Moratz and Tenbrink, 2006] we show how the robot can disentangle various op-
tions for reference systems in a situated interaction situation. In cases of true referential
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Fig. 4. Resulting segments of the four levels beginning with the highest. Sitting surfaces at the
second lowest level (third subfigure).

ambiguity, a clarification procedure would need to be initiated. Thus, joint object ref-
erence can be achieved successfully for the full scenario consisting of easily and less
easily recognizable objects. The system recognizes the more salient, functionally inter-
pretable objects and is then able to interpret the human’s reference to other, less salient
objects using the successfully identified objects as relata. As outlined above, this ap-
proach corresponds well to humans’ intuitive methods of spatial object reference. Tak-
ing this basic idea as a starting point, it is a promising endeavour in future research to
combine the automatic detection of those objects that are functionally salient to the user
with elaborate models of spatial reference resolution. In this way, users’ intuitive focus
of attention as well as basic linguistic reference strategies can be suitably accounted for
as well as exploited advantageously.

5 Integration of Affordance-Based Recognition and Linguistic
Modules

Advanced linguistic human-robot interaction as sketched in subsection 2.1 requires
the integration of the semantic knowledge of a linguistic module and the conceptual
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knowledge of the sensorical component (e.g. the object recognition module described
in section 4). Therefore we adopt an architecture/design principle which allows for the
necessary interactions and is applicable to the different domains [Habel et al., 1999].
It integrates several knowledge components and is suitable for solving the matching
problem between underdetermined conceptual representations and sensorical input.

The experimental system focuses on the object recognition module. Our goals in
realizing this system were twofold, scientifically and application oriented: On the one
hand, the system serves as the experimental means to test theoretical hypotheses about
the interaction of underdetermined conceptual representations and sensorical input of
spatial environments, on the other hand, natural language interfaces, which allow to give
affordance-based object reference instructions, can make robot applications accessible
for non-expert users.

The system consists of the following interacting modules: the syntactical compo-
nent, the semantic component, the spatial reasoning component, and the sensing and
action component. A typical interaction of the human instructor with our robot system
in the scenario depicted in figure 3 could be the following. The instructor gives the com-
mand: “Zeige mir den Gegenstand hinter dem Hocker” (“Show me the object behind
the stool”). The robot highlights the briefcase on its screen.

The system performs in the following way. The syntactical component parses the
command. The affordance-based recognition module is the main part of the sens-
ing and action component. It categorizes a seat without a backrest as stool. The spa-
tial preposition hinter (behind) is interpreted by the spatial reasoning component (see
[Moratz, 2006] for details). The semantic component decides about the most appropri-
ate integrated interpretation and decides which object to highlight.

A specific option relevant for our design methodology is using a knowledge repre-
sentation scheme for reasoning processes which is structured according to affordance-
based criteria. In Raubal and Moratz (this volume) we sketch a suitable technology
consisting of a specifically designed operator set in a robot architecture. This operator
set is used by the high-level control module for the robot, which performs the plan-
ning process about the operator sequences. The operators themselves have a functional
meaning shared by instructor and robot since the set of operators is designed according
to affordance-based criteria.

6 Conclusion and Outlook

We have outlined our approach to affordance-based joint object reference both from
a theoretical and a technological perspective. The theoretical motivation focuses on
allowing uninformed users to communicate with robots about previously unidentified
objects by using their intuitive strategies for object reference in spatial scenarios. For
this purpose, we have outlined possible human-robot interaction scenarios in relation to
human speakers’ conceptual options for achieving reference. We then briefly presented
our system under development that employs a function-based object recognition
module, utilizing 2 1

2D laser range data. Focusing on functional rather than strictly per-
ceptual aspects is a promising approach since humans typically interact with objects in
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systematic ways, thus delimiting the range of aspects that the robot needs to take into
account.

In our system new affordances cannot be learnt by the robot itself but need to be
designed by the developer of the recognition module. An interesting aim for future
research is to arrange affordances in a functional ontology. Then new affordances could
be derived in a systematic high-level way. In the next step the robot should learn new
affordances by itself.
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Abstract. Recently, the aspect of visual perception has been explored in the 
context of Gibson’s concept of affordances [1] in various ways [4-9]. In extension 
to existing functional views on visual feature representations, we focus on the 
importance of learning in perceptual cueing for the anticipation of opportunities 
for interaction of robotic agents. Furthermore, we propose that the originally 
defined representational concept for the perception of affordances - in terms of 
using either optical flow or heuristically determined 3D features of perceptual 
entities - should be generalized towards using arbitrary visual feature 
representations. In this context we demonstrate the learning of causal relationships 
between visual cues and associated anticipated interactions, using visual 
information within the framework of Markov Decision Processes (MDPs). We 
emphasize a new framework for cueing and recognition of affordance-like visual 
entities that could play an important role in future robot control architectures. 
Affordance-like perception should enable systems to react to environment stimuli 
both more efficiently and autonomously, and provide a potential to plan on the 
basis of relevant responses to more complex perceptual configurations. We verify 
the concept with a concrete implementation of learning visual cues by 
reinforcement, applying state-of-the-art visual descriptors and regions of interest 
that were extracted from a simulated robot scenario and prove that these features 
were successfully selected for their relevance in predicting opportunities of robot 
interaction.  

1   Introduction 

The concept of affordances has been coined by J.J. Gibson in his seminal work on the 
ecological approach to visual perception [1]. In the context of ecological perception, 
visual perception would enable agents to experience in a direct way the opportunities 
for action. However, Gibson remained unclear about both how this concept could be 
used in a technical system and which representation to use. Neisser [2] replied to 
Gibson’s concept of direct perception with the notion of a perception-action cycle that 
shows the reciprocal relationship of the knowledge (i.e., a schema) about the 
environment directing exploration of the environment (i.e., action), which samples the 
information available for pick up in the environment, which then modifies  
the knowledge, and so on. This cycle describes how knowledge, perception, action, 
and the environment all effectively interact in order to achieve goals.  
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Our work on affordance-like perception is in the context of technical, i.e., robotic 
systems, based on a notion of affordances that ‘fulfill the purpose of efficient prediction 
of interaction opportunities’. We extend Gibson’s ecological approach under 
acknowledgment of Neisser’s understanding that purposive visual feature representation 
on various hierarchies of abstraction are mandatory to appropriately respond to 
environmental stimuli. We take advantage of a refined concept of affordance perception 
by representing (i) an interaction component (affordance recognition: recognizing 
relevant events in interaction via perceptual entities) and (ii) a predictive aspect 
(affordance cueing: predicting interaction via perceptual entities). This conceptual step 
enables firstly to investigate the functional components of perception that make up 
affordance-based prediction, and secondly to lay a basis to identify the causal relation 
between predictive features and predicted events via machine learning technology.  

The particular contribution of this work is to demonstrate that reinforcement 
learning provides the appropriate concept to enable purposive - in particular, 
affordance based - perception which is consequently structured into cueing, behavior, 
and outcome related components. Learning is mandatory to enable agents to 
autonomously develop their characteristic embodied perception through interaction 
with the environment. Reinforcements guide the development through exploration 
without external supervision.  

The outline of this paper is as follows. Section 2 describes the relevance of 
structured affordance-like representations in robot perception and argues for the 
importance to learn the features of perceptual entities. Section 3 presents the concept 
of predictive features in the context of probabilistic decision making, in particular, 
with respect to reinforcement learning. Section 4 illustrates the experimental results 
that strongly support the proposed hypothesis on the relevance of generalized features 
that can be learned using reinforcement for successful affordance-like cueing in robot 
control systems. Section 5 concludes with an outlook on future work. 

2   Affordance Perception and Predictive Features 

Affordance-like perception aims at supporting control schemata for perception-action 
processing in the context of rapid and simplified access to agent-environment 
interactions. In this Section we argue for the relevance of learning in cue selection, 
and present a framework on functional components that enables the system to identify 
relevant visual features. 

2.1   Related Work 

Previous research on affordance-like perception focused on heuristic definitions of 
simple feature-function relations to facilitate sensor-motor associations in robotic agents. 
The MIT humanoid robot Cog was involved in object poking and proding experiments 
that investigate the emergence of affordance categories to choose actions with the aim to 
make objects roll in a specific way (Fitzpatrick et al.[6]). The research of Stoytchev [7] 
analyzed affordances on an object level, investigating new concepts of object-hood in a 
sense of how perceptions of objects are connected with visual events that arise from 
action consequences related to the object itself. However, these experiments involve 
computer vision still on a low level, and do not consider complex sensor-motor 
representation of an agent interaction in less constrained, even natural environments. In 
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the biologically motivated cognitive framework of Cos-Aguilera et al. [15], object based 
affordances are set in the context of motivation driven behavior selection. In contrast to 
our work, they do not learn visual feature extraction in a purposive manner (Section 2.2) 
but rather match sensory input with stored object features in a classical sense and then 
associate object identities with appropriate interaction patterns. 

Affordance based visual object representations are per se function based 
representations. In contrast to classical object representations, functional object 
representations (Stark and Bowyer [7], Rivlin et al. [8]) use a set of primitives (relative 
orientation, stability, proximity, etc.) that define specific functional properties, essentially 
containing face and vertex information. These primitives are subsumed to define surfaces 
from the functional properties, such as 'is sittable' or 'provides stable support'. Bogoni 
and Bajcsy [9] have extended this representation from an active perception perspective, 
relating observability to interaction with the object, understanding functionality as the 
applicability of an object for the fulfillment of some purpose. However, so far function 
based representations have been basically defined by the engineer, while - in contrast - it 
is particularly important in affordance based recognition to learn the structure and the 
features themselves from experience (Section 4). 

2.2   Predictive Features in Purposive Vision 

Fig. 1 depicts the concept of feature based affordance perception as outlined in [14]. 
We first identify the functional component of affordance recognition, i.e., the 
recognition of the affordance related visual event that causally anticipates a relevant 
interaction, e.g., the capability of lifting (lift-ability) an object using an appropriate 
robotic actuator. The recognition of this event should be performed in identifying a 
process of evaluating spatio-temporal information that leads to a final state. This final 
state should be unique in perceptual feature/state space, i.e., it should be characterized 
by the observation of specific feature attributes that are abstracted from the stream of 
sensory-motor information. 

The second functional component of affordance cueing encompasses the key idea on 
affordance based perception, i.e., anticipating the opportunity for interaction from 
causally relevant features, i.e., the predictive features, that can be extracted from the 
incoming sensory processing stream. In particular, this component is embedded in the 
perception-action cycle of the robotic agent. The agent is receiving sensory information 
in order to build upon arbitrary levels of feature abstractions, for the purpose of 
recognition of perceptual entities. In contrast to classical feature and object recognition, 
this kind of recognition is purposive in the sense of selecting exactly those features that 
efficiently support the evaluation of identifying an affordance, i.e., the perceptual entities 
that possess the capability to predict an event of affordance recognition in the feature 
time series that is immediately following the cueing stage of affordance based perception. 
The outcome of affordance cueing is in general a probability distribution PA on all 
possible affordances (Section 4.1), providing evidence for a most confident affordance 
cue by delivering a hypothesis that favors the future occurrence of a particular affordance 
recognition event. This cue is functional in the sense of associating to the related feature 
representation a specific utility with respect to the capabilities of the agent and the 
opportunities provided by the environment, thus representing predictive features within 
the affordance based perception system. 
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Fig. 1. Concept of affordance perception, depicting the key components of affordance cueing 
and recognition embedded within an agent’s perception-action cycle (most left). While 
affordance cueing (left) provides a prediction on future opportunities of interaction on the basis 
of related predictive features, affordance recognition (right) identifies the convergence of a 
sensory-motor behavior towards the identified outcome of the overall interaction pattern. 

The relevance of attention in affordance based perception has first been mentioned by 
developmental psychologist E.J. Gibson [3] who recognized that attention strategies are 
learned by the early infant to purposively select relevant stimuli and processes in 
interaction with the environment. In this context we propose to understand affordance 
cues and affordance hypotheses as fundamental part in human attentive perception, 
claiming that – in analogy – purposive, affordance based attention could play a similar 
role in machine perception as well. There are affordances that are explicitly innate to the 
agent through evolutionary development and there are affordances that have to be learned 
[1]. Learning chains of affordance driven actions can lead to learning new, more complex 
affordances. This can be done, e.g., by imitation, whereby it is reasonable to imitate goals 
and sub goals instead of actions [10]. In the context of the proposed framework on 
affordance based perception (Fig. 1), learning should play a crucial role in determining 
predictive features. 

In contrast to previous work on functional feature and object representations [7,8], 
we stress the fact that functional representations must necessarily contain purposive 
features, i.e., represent perceptual entities that refer to interaction patterns and thus 
must be selected from an existing pool of generic feature representations. Feature 
selection (and, in a more general sense, feature extraction) must be performed in a 
machine learning process and therefore avoid heuristic engineering which is always 
rooted in a human kind understanding of the underlying process, a methodology 
which is necessarily both, firstly, error prone due to failing insight into statistical 
dependencies and, secondly, highly impractical for autonomous mobile systems.  

3   Predictive Features and Probabilistic Decision Making 

3.1   Predictive Features for Affordance Cueing 

Early awareness of opportunities for interaction is highly relevant for autonomous robotic 
systems. Visual features are among the multiple modalities from sensory processing that 
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operate perception via optical rays and therefore support early awareness from rather 
remote locations. Although the necessity of affordance perception from 3D information 
recovery, such as optical flow, has been stressed in previous work [1], we do not restrict 
ourselves to any specific cue modality and intend to generalize towards the use of 
arbitrary features that can be derived from visual information, restricting only on the 
constraint that they enable reliable prediction of the opportunity for interaction processes 
from an early point in time. 

Affordance Hypotheses. The outcome of the affordance cueing system is in general 
expected to be – given a perceptual entity in the form of a multimodal feature vector - 
a probability distribution over affordance hypotheses, 

 ),|( tiiA FAPP =  

with affordance hypothesis Ai, and feature vector Ft at time t. It is then appropriate to 
select an affordance hypothesis Amax=arg maxi(P(Ai)), with Maximum A Posteriori 
(MAP) confidence support for further processing.  

Scenario. The scenario for the experiments (Fig. 2) encompassed a mobile robotic 
system (Kurt2, Fraunhofer AIS, Germany), equipped with a camera stereo pair and a 
magnetizing effector, and some can-like objects with various top surfaces, colors and 
shapes. The purpose of the magnetizing effector was to prove the nature of the 
individual objects by lowering its rope-end effector down to the top surface of the 
object, trying to magnetize the object (only the body, not the top surface of the can are 
magnetizable) and then to lift the object. Test objects with well magnetizable 
geometry (with slab like top surfaces, in contrast to those with spherical top surface) 
are subject to a lifting interaction, while the others were not able to be lifted from the 
ground. This interaction process was visualized for several test objects and sampled in 
a sequence of 250 image frames. These image frames were referenced with 
multimodal sensor information (e.g., size of magnetizing and motor current of the 
robot, respectively). 

Visual Features. From the viewpoint of a technical system using computer vision for 
digital image interpretation, we particularly think that complex features, e.g., local 
descriptors, such as the Scale Invariant Feature Transform (SIFT [11]), could support 
well the construction of higher levels of abstraction in visual feature representations. 
Fig. 3 shows the application of local (SIFT) descriptors for the characterization of 
regions of interest in the field of view. For this purpose, we first segment the color 
based visual information within the image, and then associate integrated descriptor 
responses sampled within the regions to the region feature vector. The integration is 
performed via a histogram on SIFT descriptors that are labeled with ‘rectangular’ (a) 
and ‘circular’ (b) attributes, respectively. The labeling is derived from a k-means 
based unsupervised clustering over all descriptors sampled in the experiments, then 
by selecting cluster prototypes (centers) that are relevant for the characterization of 
corresponding rectangular/circular shaped regions, and finally by determining 
histograms of relevant cluster prototypes that are typical in a supervised learning step 
(using a C4.5 decision tree [12]). 
 



82 L. Paletta and G. Fritz 

 

Fig. 2. Scenario of affordance based robot simulation experiments (Section 3). Bird’s view 
illustrating robot Kurt2 within a scene of objects of colored cans, using a magnetic effector at 
the end of a rope for interaction with the scene, described in more detail in Section 5. The lower 
left/right corner shows the field of view of the left and right camera, respectively. 

(a)  

                           (b)  

Fig. 3. Categories of local descriptor classes supporting affordance cueing. Classes of SIFT 
descriptors [11] occurring on (a) rectangular and (b) circular region boundaries, respectively.  

Cue-Feature Value Matrix. Fig. 4 shows a sample cue-feature value matrix (in the 
context of the experiments, see Section 5) that visualizes dependencies between 
feature attributes of the region information and a potential association to results of the 
affordance recognition process. We can easily see that the SIFT category information 
(rectangular=R and circular=C region characterization) together with a geometric 
feature (top=T region, i.e., representing a region that is located on top of another 
region) provides the discriminative feature that would allow the system to predict the 
future outcome (e.g., lift-able/non lift-able) of the affordance recognizer. The latter 
therefore represents the identification of the affordance and thereby the nature of the 
interaction process (and its final state) itself. 
 



 Reinforcement Learning of Predictive Features in Affordance Perception 83 

 

Fig. 4. Cue-feature value matrix depicting attribute values of 2D features (color G/green, R/red, 
M/magenta, etc.), or SIFT category (R/rectangular, C/circular, etc.) and interaction results (left 
column, bottom) in dependence on various types of visual regions (top row). From this we 
conclude a suitable feature value configuration (i.e., SIFT categories to discriminate lift-
able/non lift-able predictions) to support the hypothesis on lift-able object information.  

3.2   Reinforcement Learning of Predictive Features 

The importance in the selection of purposive features for the cueing of affordance 
relevant features has already been argued in Section 2.2. The key idea about our idea 
of applying learning for feature selection is based on the characterization of extracted 
perceptual entities, e.g., segmented regions in the image,  

 

Fig. 5. Example of an affordance recognition process (here referring to ‘lift-able’): The upper 
image shows the right camera views of the robot while trying to lift a test object by means of a 
magnetizing effector at the lower end of a rope. The diagrams visualize the observation of robot 
relevant sensor information (e.g., status of gripper, magnet [on/off] and various features of test 
objects within the focus of attention. Using this sensor/feature information, the relevant 
channels to discriminate regions of interest that are associated to lift-able and non-lift-able 
objects are identified (highlighted by ellipsoids). 
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Fig. 6. Closed-loop processing in affordance-based feature recognition. On the basis of 
attentive image segmentation (curiosity drive), feature entities are recognized, build up a 
perceptual state and fed into the decision making component. Different perceptual states will 
anticipate different trajectories in state space; those that are highly rewarded since they 
anticipate targeted outcome states (the outcome event), will eventually represent a ‘cue’ status.  

(a) 

(b)  

Fig. 7. Structure of the Markov decision process. (a) Perceptual states that represent the 
outcome (effect) status can be traced back to ‘early’ perceptual states that enable anticipation of 
future perceptual states, on the basis of a particular behavior based interaction between agent 
and environment (sequence of perceptual states and actions).  
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via a feature vector representation. Each region that would be part of the final state 
within the affordance recognition process can be labeled with the corresponding 
affordance classifications. The regions can be back-tracked using standard visual 
tracking functionality to earlier stages in the affordance perception process. The 
classification label together with the feature attributed vectors of the region 
characterization build up a training set that can be input to an exploratory machine 
learning methodology, such as, reinforcement learning.  

Markov decision processes (MDPs [16]) have already been introduced in the context 
of object recognition (e.g., in [17,18]), in the sense of optimal selection of visual 
procedures or selected foci of attention to integrate visual information for decision 
making. Here, the MDP will provide the general framework to outline a multi-step 
behavioral task under the viewpoint of state based prediction, i.e., cueing, of future 
outcomes of that task. Fig. 6 shows a schematic outline of closed-loop learning of the 
behavioral task within the robot scenario presented in Sec. 3.1, together with the 
extraction of early cues (feature recognition) from a selection of relevant attributes.  

An MDP is defined by a tuple (S;A;δ;ℜ) with state recognition set S, action set A, 
probabilistic transition function δ, and reward function ℜ: S×A → Π(S). This 
describes a probability distribution over subsequent states, given action a∈A 
executable in state s∈S. In each transition, the agent receives reward according to 
ℜ:S×A→R, ℜt∈R. In our experimental scenario, the agent must act to maximize the 
utility Q(s,a), i.e., the expected discounted reward 
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where γ∈ [0,1] is a constant controlling contributions of delayed reward. We 
formalize a sequence of action selections a1, a2, …, an as an MDP and are searching 
for optimal solutions with respect to finding action selections so as to maximizing 
future reward with respect to the affordance task. With each action, an estimate on the 
cumulative reward gives feedback about the direction towards the goal of the task. 
With each action, the reward is received per action by Ω=:),( asR , with Ω=1 if 
the goal event is reached (object lifted into goal image zone), and Ω=0 if  not (Fig. 8). 
Since the probabilistic transition function Π(.) cannot be known beforehand, the 
probabilistic model of the task is estimated via reinforcement learning, e.g., by Q-
learning [19], which guarantees convergence to an optimal policy applying sufficient 
updates of the Q-function Q(s; a), mapping recognition states (s) and actions (a) to 
utility values. The Q-function update rule is  
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where α is the learning rate and γ controls the impact of an action on future policy 
returns. The decision process is determined by the sequence of actions. The agent 
selects then the action with largest Q(s,a), i.e., 
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so as to maximize the cumulative expected reward Q(s,a). In the selected scenario, 
actions and states are defined as described in Fig. 7 and 9, respectively. 

4   Experimental Results 

The experiments were performed in a simulator environment with the purpose of 
providing a proof of concept of successful learning of predictive 2D affordance cues 
and characterizing affordance recognition processes.  

4.1   Simulation 

The scenario is split up into two phases (a) a cueing phase, i.e., the robot is moving to 
the object, and (b) a recognition phase, i.e., the robot tries to lift an object as depicted 
in Fig. 2. In both phases, parts of the objects are described by their regions and any 
region has different features like color, center of mass, top/bottom location and the 
shape description (rectangular, circular) already described in Section 3. These features 
are extracted from the robot camera imagery. Additional information, such as effector 
position, are provided by the robot. Regions are the entities used in the experiment, 
i.e. no explicit object model is generated for the can-like objects. 

4.2   Affordance Recognition 

The recognition of an affordance is crucial for verifying a hypothesis about an 
affordance A associated with a entity E. These entities are extracted out of the images 
as follows. Firstly, a watershed algorithm is used to segment regions of similar color 
together. After merging of smaller parts, every entity is represented by the average 
color value, the position in the image and the relation to adjacent regions 
(top/bottom). This information is also used for tracking entities over time. To verify 
whether or not an entity becomes ‘lift-able’, the magnetizable effector of the robot is 
lowered until the top region of the object under investigation is reached, the magnet is 
switched on and the effector is lifted up. Fig. 5 shows the features of the effector 
(position and magnet status) over time (diagram of gripper features). If the entity is 
lift-able (Fig. 6, right column), a common motion between effector and region can be 
recognized. Additionally the magnet has to be switched on and the effector has to be 
placed in the center of the top region. These rules build up the affordance recognizer 
looking for lift-able entities in the recognition phase of the experiment. 

4.3   Reinforcement Learning of Predictive Features 

Cueing and recognition can require extraction of different kinds of features. Section 3 
already emphasized the need for some structural description of the top region, to 
separate the unequal shape of the top regions. In order to get structural information 
about an entity, a histogram over prototypical SIFT descriptors is used to discriminate 
between circular and rectangular regions. 
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Fig. 8. Reinforcement issued for an object being captured into different zones of the image. If 
the object is captured and brought into the ‘trigger zone’ (high, zone ‘3’), then a reinforcing 
reward of Ω=1 is delivered, otherwise it is Ω=0 (Sec. 3.2). 

 
(a) 

 

 
(b) 

Fig. 9. Descriptions of components and entities of the reinforcement learning task within the 
denoted robot scenario. (a) Definition of the action set. (b) Definition of the perceptual state 
vector S.  
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Classification of Relevant Descriptors. All local SIFT descriptors extracted in the 
region of the entities are clustered using the k-means (k = 100) method. For each 
specific entity, we generate a histogram over cluster prototypes, using a NN-approach 
to get the cluster label for each SIFT descriptor in that region. In a supervised learning 
step, every histogram is labeled whether it is or isn’t associated with a rectangular or 
circular entity. A C4.5 decision tree of size 27 is then able to distinguish between 
these two classes. The error rate on a test set with 353 samples is ~ 1.4%. Table 1 
shows the resulting confusion matrix for the test set. 

Table 1. Confusion Matrix for C4.5 Based Structure Classification 

Classified as  
Rect. Circ.  
256 1 Rect. 
4 92 Circ. 

Class 

 
Q-learning, decisive states, and affordance based cueing. The objects tested for the 
affordance ‘lift-able’ in the recognition phase are members of the training set. The 
outcome of the recognition provides the class label (‘lift-able’ or ‘non lift-able’). The 
bottom region of the object is marked ‘unknown’ because this entity is not tested 
directly. As mentioned earlier, there exists no object model yet, therefore only entities 
exist in the system. Backtracking the object’s entities over time allows additional 
training samples to be used with little additional memory effort to remember the data. 
In our experiment, 30 frames are used from the beginning of the affordance 
recognition back, for a recall of ~2.5 seconds from the past (12 fps are captured by the 
robot during simulation). The entity representation for the cueing phase contains the 
following features: (a) average color value of the region in the image, (b) top/bottom 
information, (c) the result of the structure classification, and (d) the size of the 
segmented region. Fig. 10 depicts the learning curve resulting from the reinforcement 
learning phase, with respect to the average cumulative predicted reward associated to 

 

 

Fig. 10. Learning curve resulting from the reinforcement learning phase, with respect to the 
average cumulative predicted reward associated to an early perceptual state that is verified to 
represent a ‘cueing’ state 
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Fig. 11. Different results for cumulative predicted rewards (E(R)), reflecting different 
evaluation of states towards ‘cueing’ and ‘non-cueing’ states, and one intermediate type of state 
that eventually should not be interpreted as ‘cueing’ state, as it is characterized as delivering 
ambiguous information about the anticipatory potential of the referred perceptual state. The 
features of the predictive cue (top) describe the segmentation of a sample color region at the top 
of a region configuration that is particularly characterized by the rectangular SIFT descriptors 
(Drect). In contrast, a non-predictive perceptual state is characterized by the associated circular 
SIFT descriptors (Dcirc). No decisive information can be derived from a perceptual state 
(bottom) that represents a region at the bottom (e=down) of a region configuration. 

an early perceptual state that thereby is verified to represent a ‘cueing’ state. Fig. 11 
depicts different results for cumulative predicted rewards reflecting different 
evaluation of states towards ‘cueing’ and ‘non-cueing’ states, and one intermediate 
type of state that eventually should not be interpreted as ‘cueing’ state but rather 
characterized as delivering ambiguous information about the anticipatory potential of 
the referred perceptual state.  

5   Conclusions 

This work presented the framework of reinforcement learning for perceptual cueing to 
opportunities for interaction of robotic agents. The framework for cueing and 
recognition of affordance-like visual entities is verified with a concrete 
implementation using state-of-the-art visual descriptors on a simulated robot scenario 
and demonstrates that features can be successfully selected that are relevant for 
prediction towards affordance-like control in interaction. The simulation was chosen 
in a realistic way so that major elements of a real world scenario, such as shadow 
events, noise in the segmentation, etc., characterized the results and thus enable a 
scaleable verification of the theoretical assumptions.   

Future work will focus on extending the feature based representations towards object 
driven affordance-based interaction, grounding the work on the visual descriptor 
information presented here, and demonstrating the generality of the concept. Further- 
more, we believe that the presented reinforcement learning paradigm provides the 
appropriate methodology to motivate the learning of functional object recognition on the 
basis of the reward driven cost function. This implies that the  categorization of 
predictive perceptual states into a classification of predictive object features, grounding 
the object notion in a concept of predictive feature abstractions. 



90 L. Paletta and G. Fritz 

References 

[1] Gibson, J.J.: The Ecological Approach to Visual Perception, Boston, Houghton Mifflin 
(1979) 

[2] Neisser, U.: Cognition and Reality. Principles and Implications of Cognitive Psychology 
Freeman & Co, San Francisco (1976) 

[3] Gibson, E.J.: Exploratory behavior in the development of perceiving, acting and the 
acquiring of knowledge. Annual Review of Psychology 39, 1–41 (1988) 

[4] Faillenot, I., Toni, I., Decety, J., Grégoire, M.-C., Jeannerod, M.: Visual pathways for 
object-oriented action and object recognition: functional anatomy with PET. Cerebral 
Cortex 7, 77–85 (1997) 

[5] Fitzpatrick, Paul, Metta, G., Natale, L., Rao, S., Sandini, G.: Learning About Objects 
Through Action - Initial Steps Towards Artificial Cognition. In: ICRA. Proc. IEEE 
International Conference on Robotics and Automation, Taipei, Taiwan (May 12–17, 
2003) 

[6] Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: ICRA. Proc. 
IEEE International Conference on Robotics and Automation, Barcelona, Spain (April 18–
22, 2005) 

[7] Stark, L., Bowyer, K.W.: Function-based recognition for multiple object categories. 
Image Understanding 59(10), 1–21 

[8] Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer 
Vision and Image Understanding 62, 64–176 (1995) 

[9] Bogoni, L., Bajcsy, R.: Interactive Recognition and Representation of Functionality. 
Computer Vision and Image Understanding: CVIU 62(2), 194–214 (1995) 

[10] Edwards, M.G., Humphreys, G.W., Castiello, U.: Motor facilitation following action 
observation: a behavioural study in prehensile action. Brain Cognition 53, 495–502 (2003) 

[11] Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal 
of Computer Vision 60(2), 91–110 (2004) 

[12] Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA 
(1993) 

[13] Cos-Aguilera, I., Cañamero, L., Hayes, G.M., Gillies, A.: Ecological integration of 
affordances and drives for behaviour selection. In: Bryson, J., et al. (eds.) Proc. Workshop 
on Modeling Natural Action Selection, pp. 225–228. AISB Press (2005) 

[14] Fritz, G., Paletta, L., Kumar, M., Dorffner, G., Breithaupt, R., Rome, E.: Visual Learning 
of Affordance based Cues. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., 
Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), 
vol. 4095, Springer, Heidelberg (2006) 

[15] Cos-Aguilera, I., Hayes, G.M., Canamero, L., Gillies, A.: Ecological Integration of 
Affordances and Drives for Behaviour Selection. In: Proc. Workshop on Modelling 
Natural Action Selection, SMNAS, Edinburgh, UK (2005) 

[16] Puterman, M.: Markov decision processes: Discrete stochastic dynamic programming. 
John Wiley & Sons, New York (1994) 

[17] Draper, B.A.: Modeling Object Recognition as a Markov Decision Process. In: Proc. 13th 
International Conference on Pattern Recognition, vol. 4, p. 95 

[18] Paletta, L., Fritz, G., Seifert, C.: Q-Learning of Sequential Attention for Visual Object 
Recognition from Informative Local Descriptors. In: ICML 2005. Proc. 22nd 
International Conference on Machine Learning, Bonn, Germany, August 7-11, 2005, pp. 
649–656 (2005) 

[19] Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992) 



E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 91–105, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Functional Model for Affordance-Based Agents 

Martin Raubal1 and Reinhard Moratz2 

1 Department of Geography, University of California at Santa Barbara 
5713 Ellison Hall, Santa Barbara, CA 93106, U.S.A. 

2 Department of Mathematics and Informatics, University of Bremen 
Bibliothekstr. 1, 28359 Bremen, Germany 

raubal@geog.ucsb.edu, moratz@informatik.uni-bremen.de 

Abstract. Today’s mobile artificial agents, such as mobile robots, are based on an 
object-oriented paradigm. They partition their environment into various objects 
and act in relation to individual properties of these objects. Such perception and 
acting is insufficient for goal-directed behavior in dynamic environments, which 
requires action-relevant information in the form of affordances. Affordances 
describe action possibilities with respect to a specific agent. In this paper, we 
propose a functional model for affordance-based agents. This model integrates an 
adjusted version of the HIPE theory of function and an extended theory of 
affordances. We demonstrate the applicability of the functional model by relating 
it to two different cases of mobile robot interaction and outline an affordance-
oriented robot architecture. 

1   Introduction 

Current mobile robot interaction with the environment is limited due to the wealth of 
dynamic and action-relevant information, which cannot be handled by today’s 
architectures (Rome et al. 2006). Perception mechanisms are focused on the objects and 
their properties but do not directly concentrate on the available action possibilities. 
Detecting agent-specific action possibilities is a necessary process for the robot in order 
to evaluate whether certain tasks can be fulfilled or not. In this paper we propose a fun- 
ctional model for affordance-based agents. Affordances are action possibilities with 
regard to a specific user and allow for a distinction between such possibilities and the 
actual performance of actions. They are ideal candidates for focusing on the agent-
environment mutuality (Gibson 1979). 

The original affordance idea introduced by J. J. Gibson was grounded in the paradigm 
of direct perception. In order to compensate for the neglect of cognitive processes, we use 
an extended theory of affordances (Raubal 2001)—including cognition, situational 
aspects, and social constraints—for the affordance-based representation. This theory is 
integrated with the HIPE theory of function (Barsalou et al. 2005) and therefore makes a 
functional model for affordance-based agents possible. Such representation allows the 
robot to detect action-relevant properties of the environment tailored to its own spatio-
temporal context, tasks, and capabilities. In addition, action possibilities for humans can 
be modeled in the same way, which supports the sharing of functionalities between 
human and robot, and facilitates communication. We apply this model to two different 
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scenarios for mobile robots and discuss the advantages of this approach also with regard 
to architectural issues. 

Section 2 introduces Gibson’s affordance theory, discusses its downsides, and 
presents an extended theory of affordances. In Section 3 we describe the functional 
framework of representing affordances, which is based on the HIPE theory of 
function. Two mobile robot systems (Rolland and PEIS) are briefly illustrated in 
Section 4. We then develop possible scenarios for these systems and represent them 
within the new functional affordance model. Section 5 proposes an integration of the 
model within a robot architecture. Finally, we give conclusions and present directions 
for future research. 

2   Affordances 

This section introduces the notion of affordance, discusses deficiencies of the original 
theory, and presents an extended affordance theory. 

2.1   Gibson’s Theory of Affordances 

The term affordance was originally introduced by James J. Gibson who investigated how 
people visually perceive their environment (Gibson 1977). His theory is based on 
ecological psychology, which advocates that knowing is a direct process: The perceptual 
system extracts invariants embodying the ecologically significant properties of the 
perceiver’s world. Gibson’s theory is based on the tenet that animal and environment 
form an inseparable pair. This complementarity is implied by Gibson’s use of ecological 
physics. Such physics considers functions of the environment at an ecological size level 
contrary to a description in terms of space, time, matter, etc., within classical physics. 

Affordances have to be described relative to the person. For example, a chair’s 
affordance ‘to sit’ results from a bundle of attributes, such as ‘flat and hard surface’ 
and ‘height’, many of which are relative to the size of an individual. Later work with 
affordances builds on this so-called agent-environment mutuality (Gibson 1979; Zaff 
1995). According to Zaff (1995), affordances are measurable aspects of the 
environment, but only to be measured in relation to the individual. It is particularly 
important to understand the action relevant properties of the environment in terms of 
values intrinsic to the agent. Warren (1995) demonstrates that the ‘climbability’ 
affordance of stairs is more effectively specified as a ratio of riser height to leg length. 
Experimentally, subjects of different heights perceived stairs as climbable depending 
on their own leg length, as opposed to some extrinsically quantified value. 
Additionally, dynamic or task specific conditions must be considered. 

Norman (1988) investigated affordances of everyday things, such as doors, 
telephones, and radios, and argued that they provide strong clues to their operation. 
He recast affordances as the results from the mental interpretation of things, based on 
people’s past knowledge and experiences, which are applied to the perception of these 
things. Gaver (1991) stated that a person’s culture, social setting, experience, and 
intentions also determine her perception of affordances. Affordances, therefore, play a 
key role in an experiential view of space (Lakoff 1988; Kuhn 1996), because they 
offer a user centered perspective. Similarly, Rasmussen and Pejtersen (1995) pointed 
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out that modeling the physical aspects of the environment provides only a part of the 
picture. “The framework must serve to represent both the physical work environment 
and the ‘situational’ interpretation of this environment by the actors involved, 
depending on their skills and values.” (Rasmussen and Pejtersen 1995, p. 122) This 
can be broken into three relevant parts, the mental strategies and capabilities of the 
agents, the tasks involved, and the material properties of the environment. 

2.2   Extended Theory of Affordances 

In this work we use an extended theory of affordances within a functional model for 
affordance-based agents. It supplements Gibson’s theory of perception with elements 
of cognition, situational aspects, and social constraints. This extended theory of 
affordances suggests that affordances belong to three different realms: physical, 
social-institutional, and mental (Raubal 2001). 

Physical affordances require bundles of physical substance properties that match 
the agent’s capabilities and properties—and therefore its interaction possibilities. One 
can only place objects on stable and horizontal surfaces, one can only drink from 
objects that have a brim or orifice of an appropriate size, and can be manipulated, etc. 
Common interaction possibilities are grasping things of a certain size with one’s 
hands, walking on different surfaces, and moving one’s eyes to perceive things. 
Physical affordances such as the ‘sittability’ affordance of a chair depend on body-
scaled ratios, doorways afford going through if the agent fits through the opening, and 
monitors afford viewing depending on lighting conditions, surface properties, and the 
agent’s viewpoint. 

Many times it is not sufficient to derive affordances from physical properties alone 
because people act in environments and contexts with social and institutional rules 
(Searle 1995; Smith 1999). The utilization of perceived affordances, although 
physically possible, is often socially unacceptable or even illegal. The physical 
properties of an open entrance to a subway station afford for a person to move 
through. In the context of public transportation regulations it affords moving through 
only when the person has a valid ticket. The physical properties of a highway afford 
for a person to drive her car as fast as possible. In the context of a specific traffic code 
it affords driving only as fast as allowed by the speed limit. Situations such as these 
include both physical constraints and social forces. Furthermore, the whole realm of 
social interaction between people is based on social-institutional affordances: Other 
people afford talking to, asking, and behaving in a certain way. Many of these 
affordances are not tied to particular locations, e.g., people can also talk to other 
people over the phone. 

Physical and social-institutional affordances are the sources of mental affordances. 
During the performance of a task a person finds herself in different situations, where 
she perceives various physical and social-institutional affordances. For example, a 
public transportation terminal affords for a person to enter different buses and trains. 
It also affords to buy tickets or make a phone call. A path affords remembering and 
selecting, a decision point affords orienting and deciding, etc. In general, such 
situations offer for the person the mental affordance of deciding which of the 
perceived affordances to utilize according to her goal. 



94 M. Raubal and R. Moratz 

3   A Functional Affordance Model 

The functional representation of affordance-based agents utilizes Barsalou’s HIPE 
theory of function. We first describe this theory and then apply it to the construction 
of the functional affordance model. 

3.1   HIPE Theory of Function 

In an effort to analyze the detailed structure of function and how functional 
knowledge is represented and processed, Barsalou et al. (2005) developed the HIPE 
theory of function. This theory explains people’s knowledge about function by 
integrating four types of conceptual knowledge: History, Intentional perspective, 
Physical environment, and Event sequences. Functional knowledge emerges during 
mental simulations of events based on these domains. 

It is argued that agents believe that the histories of an artifact are central to its 
function. Furthermore, the physical structure of an object depends on its original 
design purpose. Barsalou et al. reason though that the physical structure alone is 
insufficient for knowing its function because context, such as knowledge of the 
setting, is necessary too1. This also leads to non-standard functions that obscure 
standard roles. For example, a hammer might also be used as a paper weight. When 
representing a function, the agent’s intentional perspective determines the subset of 
functional knowledge, which gets retrieved. Such meta-cognitive perspective and 
point-of-view therefore determine the content of the functional simulation. The 
physical environment comprises not only the object whose function is to be 
determined and various aspects of the setting, but also external agents. Their physical 
structures are central to the function of an object2. Together, the object, the setting, 
and optional external agents constitute a physical system that is sufficient to produce a 
functional outcome, e.g., an affordance outcome. Finally, when this physical system is 
present, an event sequence is simulated. It includes the behaviors of all relevant 
objects and agents, and produces an outcome. 

The HIPE theory explains function as a complex relational structure distributed 
across different modalities. It is a meta-framework that can distinguish different 
function theories at an abstract level, such as affordance theories and historical views. 
In addition, HIPE makes it possible to generate useful predictions depending on the 
represented theories. 

3.2   Functional Representation of Affordances 

The HIPE theory is well suited for the formalization of affordances because of their 
functional character. Similar to functions, affordances are complex relational 
constructs, which depend on the agent, its goal and personal history, and the setting. 
The HIPE theory allows for representing what causes an affordance and therefore 
                                                           
1 S. Chaigneau and L. Barsalou (forthcoming) elaborate the fact that physical affordances in the 

sense of Gibson seem to be more important to understand functions, but history can become 
important under certain conditions. 

2 This is essentially a functional affordance, which emerges through the agent-environment 
mutuality. 
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supports reasoning about affordances. More specifically, it is possible to specify 
which components are necessary and sufficient to produce a specific affordance for a 
specific agent. 

Figure 1 demonstrates the abstract functional representation of the relation between 
the three affordance categories presented in section 2.2 during the process of an agent 
performing a task. The agent is represented through its physical structure (PS), spatial 
and cognitive capabilities (Cap), and a goal (G). Physical affordances (Paff) for the 
agent result from invariant compounds (Comp)—unique combinations of physical, 
chemical, and geometrical properties, which together form a physical structure—and 
the physical structure of the agent. This corresponds to Gibson’s original concept of 
affordance: a specific combination of (physical) properties of an environment taken 
with reference to an observer. 

 

SIaff 

Paff 

Maff 

Comp (PS) 

Agent (PS) 

Cont (SI) 

Agent (Cap,G) 

Task 

Op (Int) Op (Ext) O (Ext) O (Int) Env (S,T) 

 

Fig. 1. Functional representation of affordances for an agent—from (Raubal et al. 2004) 

Social-institutional affordances (SIaff) are created through the imposition of social 
and institutional constraints on physical affordances—when physical affordances are 
perceived in a social-institutional context Cont (SI). While performing a task the agent 
perceives various physical and social-institutional affordances within a spatio-
temporal environment represented through Env (S,T). This corresponds to HIPE’s 
notion of a physical system and allows for localizing the perception of affordances in 
space and time. 

Mental affordances (Maff) arise for the agent when perceiving a set of physical and 
social-institutional affordances in an environment at a specific location and time. 
Affordances offer possibilities for action as well as possibilities for the agent to 
reason about them and decide whether to utilize them or not, i.e., mental affordances. 
The agent needs to perform an internal operation Op (Int) to utilize a mental 
affordance. Internal operations are carried out on the agent’s beliefs (including its 
history and experiences) and lead to an internal outcome O (Int). In order to transfer 
such outcome to the world, the agent has to perform an external operation Op (Ext), 
which then leads to an external outcome O (Ext), i.e., some change of the external 
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world. This external change, in turn, leads to new physical affordances, situated in 
social-institutional and spatio-temporal contexts. 

4   Application Scenarios for Linguistically Enabled Robots 

In the following, we describe two real robotic systems, give scenarios for each of them, 
and present their semiformal representations within the new functional affordance 
framework. 

4.1   Robotic System Descriptions 

This section briefly introduces the two robotic systems considered for the proposed 
functional affordance model, namely the Bremen Autonomous Wheelchair Rolland 
and the PEIS (Physically Embedded Intelligent Systems) ecology. 

 

Fig. 2. Bremen Autonomous Wheelchair Rolland 

4.1.1   Rolland 
The Bremen Autonomous Wheelchair Rolland (figure 2) has a specific reactive layer, 
the so-called safety layer (Röfer and Lankenau 2000). Its purpose is to guarantee 
obstacle avoidance by a formally verified low-level module. More complex behaviors 
such as wall following send their commands to the safety layer, which checks their 
effects with regard to whether they would lead to collisions.  

Rolland’s linguistic module interprets route descriptions by a human instructor 
(driver) (Mandel et al. 2006). The mappings between linguistic constituents and 
internal qualitative spatial maps (route graphs) are based on ontological represent- 
tations (Ross et al. 2005). 
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4.1.2   PEIS Ecology 
The PEIS (Physically Embedded Intelligent Systems) ecology is a network of 
heterogeneous smart devices that ranges from simple gadgets, such as refrigerators 
with sensors, to sophisticated mobile robots. These intelligent devices communicate 
on a high, abstract level to combine physical and virtual functionalities to perform 
complex tasks (Broxvall et al. 2006). In a typical application of the PEIS ecology a 
human inhabitant is supported in his flat (e.g., elderly care). Food supply checking, 
cleaning services, load carrying, and other support are provided by the PEIS network 
in this scenario. A detailed account of the PEIS ecology can be found in the present 
volume (Saffiotti this volume). 

4.2   Affordance-Based Scenarios 

This section shows exemplar interaction sequences for the robotic systems described 
in the previous section. These sequences focus on the involved affordances. Even if 
the examples are inspired by the capabilities of the real robotic systems we here refer 
to potential future versions of the systems with slightly enhanced features. 

4.2.1   Scenario 1: Rolland 
In this scenario a handicapped user of the Rolland system wants to make a tour 
starting at the rehabilitation centre with the goal of performing a transaction at the 
municipal authority. The first important affordance in this context is the social-
institutional affordance created by the opening hours of the municipal authority. This 
affordance is represented as part of the background knowledge of the Rolland system, 
which shall also support users with cognitive deficits such as memory disorders. 
Taking into account this social-institutional affordance an adequate starting time for 
the journey is selected by the route planner of the Rolland system. Rolland’s internal 
map of the city contains drivable sidewalks, possibilities for street crossing (lowered 
curbstones), suitable elevators in buildings, etc3. 

Based on the mental affordance of evaluating the possibility of performing the 
given task, the route planner of the Rolland system generates a route from the 
rehabilitation centre to the municipal authority. When the Rolland system follows the 
route, the physical affordances of the environment are perceived. In case of 
deviations, for example, due to road construction work, the system must replan based 
on the updated map. Additional mental affordances for the robotic system lead to 
high-level decisions (state/subgoal changes in the deliberative layer, see section 5) 
about the present location of the robot (self localization). 

4.2.2   Scenario 2: PEIS Ecology 
As reported above the PEIS ecology consists of multiple robots and smart devices that 
interact with a human user. In the presented scenario a small PEIS robot is blocked by 
an obstacle. The obstacle itself can be a simple PEIS entity. Then the necessary 
information about potential pushability would be communicated by this blocking 

                                                           
3 Since these internal representations are not necessarily correct with respect to the 

corresponding true state of the physical world, they should not be confused with these real 
physical properties of the environment (physical affordances). 
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physical object itself. If the small robot were not able to push the obstacle, the PEIS 
network could offer a solution by shared functionalities. For example, the obstacle 
might offer different physical affordances to a bigger and stronger PEIS robot in the 
current network. This second robot could be capable of pushing the obstacle away. 
Then the smaller robot could send a message (i.e., communicate, which is a social-
institutional affordance) to the bigger robot, asking it to move the obstacle away. In 
this scenario the mental affordances result from the offered functionalities of the 
different PEIS entities in the distributed PEIS network configuration memory 
(Broxvall et al. 2006). A planner on a local PEIS entity can then access these 
functionalities offered by other PEIS entities. Another example of social-institutional 
affordances in this scenario is the constraint for the mobile robots not to drive around 
too fast making noise at night and therefore wake up the human inhabitants of the flat. 

4.3   Representation within Functional Affordance Model 

In the following we represent both scenarios within the functional affordance model 
and discuss the proposed representations. 

4.3.1 Representation of Scenario 1 
It is important to notice that there are different hierarchical levels for the task of 
performing a transaction at the municipal authority. The most generic representation 
is at the top level and the further one goes down in the hierarchy the more specific the 
affordances become. For our scenario, one top-level action (resulting from a physical 
affordance) is navigating from the rehabilitation centre to the municipal authority 
office. Examples for actions on lower levels are street crossing, turning left/right, or 
halting in front of a red light. Figure 3 shows the representation at the top level. The 
compound affording something is marked through outgoing dotted arrows. 

On the top level, the municipal authority building affords Rolland to enter the 
building. Entering is constrained by the opening hours of the municipal authority, 
which create a SIaff on top of the Paff. The environment for perceiving affordances 
consists here of two parts: first, the physical environment, where Rolland is spatio-
temporally located, i.e., the rehabilitation centre at 9am; and second, Rolland’s 
internal map of the city, which offers synthetic affordances in the sense that they 
might be different from the real-world affordances. Rolland’s task is to perform a 
transaction at the municipal authority. Its capabilities comprise the safety layer and 
also various complex behaviors. The goal is imposed (through communication) by its 
handicapped user. All of these functions result in the top-level Maff for Rolland, 
namely to evaluate whether this task can be fulfilled with the given constraints 
represented through the functions. More formally, the (interconnected) sets of 
physical and social-institutional affordances at a given point in space and time result 
in a set of mental affordances for the agent: {Paff, SIaff}Env(S,T) => {Maff}. Maffs are 
therefore higher-order functions because Paffs and SIaffs are functions themselves. 

The second part of the top-level process is represented in Figure 4. Rolland performs 
internal operations (within a planning process), deciding whether the task can be 
performed based on the given functions. The outcome of this operation is a specific  
route (under temporal constraints) to the municipal authority building. Navigating 
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SIaff (9am-5pm) 

Paff (enter) 

Maff 

Municipal authority (PS) 

Rolland (PS) 

Opening hours (SI) 

Rolland (Cap,G) 

Transaction 

Rehab centre (x,9am) 
Internal map 

 

Fig. 3. Top level for Rolland’s task 

to this building is an external operation and after some time Rolland can reach the 
building. The external outcome is then reaching and finally entering the building (and 
subsequently performing the transaction). Again, during the actual process of 
navigating, Rolland perceives physical affordances in the actual environment and 
must react and replan if needed. 

 

Maff 
Planning 

Utilize Paff? 

Navigate to 
Municipal 
authority 

Enter and do 
transaction 

Route 
Utilize Paff! 

 

Fig. 4. Functional activity process for Rolland 

4.3.2   Representation of Scenario 2 
This representation is more complex because it involves two robots, which are also 
able to communicate with each other (figure 5). The obstacle is too heavy and 
therefore affords the small robot (Robot1) not to push it away, which is a negative 
affordance (Gibson 1977). On the other hand it affords a bigger robot (Robot2) to 
push it away due to the different physical structure and capabilities of this robot. An 
important point demonstrated in the PEIS scenario is the possibility of affordance 
transfer, i.e., affordances can be utilized indirectly via other agents4. Here, this is 
made possible by the physical network infrastructure, which affords communication 
(in the technical sense), and the SIaff for Robot1, i.e., that Robot2 affords asking to 
push the obstacle away. Robot1 is located in the flat at position x and time 10pm. The 
floor of the flat affords driving around (Paff) and the time of the day imposes a 
SIaff—drive slowly without making noise (not represented in the figure to keep it 
simple). The task of Robot1 is to move the obstacle, which is blocking the robot’s 
way. Its capabilities comprise various behaviors and the overall goal might be driving 
into the kitchen. Again, all of these functions result in the Maff for Robot1, namely to 
determine the best way for moving the obstacle. 
                                                           
4 This is crucial when considering computational complexity because often a large number of 

possibilities for affordance transfer exists in reality. 
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Fig. 5. Top level for PEIS scenario 

Figure 6 represents the second part of the decision process for Robot1. The robot 
performs an internal planning operation with regard to its task of moving the obstacle. 
Based on the available functions and information from the distributed PEIS network 
configuration memory, the robot makes a decision to ask Robot2 for help, i.e., to 
utilize the SIaff. It then performs the corresponding external operation (sending a 
request over the network) and the resulting outcome of this process is a Maff for 
Robot2, namely to decide whether to help Robot1 or not. This also demonstrates the 
connectivity between various decision processes in the functional affordance model: 
The external outcome of one process offers another affordance for the same or other 
agents in the system. In this sense, all processes within spatio-temporal multi-agent 
environments can be represented as higher-order functions. 

 
Maff 

Planning 
Utilize SIaff? Ask Robot2 Maff for Robot2 

Decision to ask Robot2 
Utilize SIaff!  

Fig. 6. Functional activity process for Robot1 

5   Affordance-Based Architectures for Human-Robot Interaction 

This section outlines an integration of the new functional affordance-based 
representation within a robot architecture. We also discuss the advantages of such an 
architecture compared to traditional approaches. 

The proposed robot architecture is a modification of the standard three layer 
architecture (Gat 1998; Wasson et al. 1999). Three layer robot architectures typically 
consist of a deliberative layer, a skill layer, and a reactive layer. The deliberative layer 
takes a high-level goal (in our case typically an instructor command) and synthesizes 
it into a partially ordered list of operators. These operators correspond to 
skills/behaviors in the skill layer. The skill layer activates basic action and perception 
patterns in the reactive layer. 
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Deliberative Layer

Skill Layer

dialogue planner

affordance hierarchy

Reactive Layer

basic affordance
invocation

 

Fig. 7. Basic affordances as interface between deliberative and skill layer 

Our proposed modification of this architecture (figure 7) aims at the nature of the 
skills/operators, and the interface between deliberative layer and skill layer. Similar to 
the architecture proposed by Arkin et al. (2003) we focus on a cognitive basis for 
defining the set of operators. Whereas Arkin et al. use motivation-oriented animal 
activities as blueprint for their design we pose the design constraint on our 
architecture that the operators have to represent relevant affordances of the shared 
interaction domain of human and robot (or robot and robot as in the PEIS scenario). 
Affordances are therefore ‘first-class citizens’. Within this architecture, the robot’s 
central focus is on functional compounds rather than properties in isolation. 

The affordances in a scenario represent the relevant action possibilities for both 
robots and humans. Relevance of the robot action possibilities in this view does not 
only refer to the robot’s planner but mainly to the user’s mental model (Gentner and 
Stevens 1983) of the robot. In practice this results in the design principle to 
investigate the mental models of human users and to take them into account for the 
design of the interface between the deliberative layer of the robot and its lower levels. 

Due to this design principle the robot can verbalize its currently planned sequence 
of high-level actions. The motivation for performing an action is to reach a subgoal. 
In our architecture the robot is then able to verbalize its subgoals. As humans expect 
their communication partners to be able to verbalize their subgoals our proposed 
architecture supports clarification dialogues. These clarification dialogues are crucial 
in situations where the human must support the robot with hints or even physical 
assistance. In general, the utility of dialogues in human-robot teams increases the trust 
of the human operator in the robots under command (Jones and Rock 2002). 

This trust is crucial in situations were the robot (-team) supports a handicapped 
user. For example, the Rolland system could recognize that a lowered curbstone as 
part of its path is blocked by a halting car. Then Rolland could either autonomously 
replan the path or first communicate this blocked physical affordance to the user. If 
the driver of the car is present the user of Rolland could then ask the driver to remove 
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Fig. 8. Affordance-based representation of ‘blocking situation’ 

the car. Figure 8 demonstrates the affordance-based representation of this situation. If 
we compare both alternatives it is obvious that the setting where Rolland would 
silently make a big detour to reach the goal would confuse the user and may destroy 
her trust in the system5. 

To sum up, the difference between our proposed architecture and more traditional 
ones is to represent the corresponding action possibilities for both humans and robots in a 
given scenario in a uniform manner. The presented functional theory offers such unifying 
framework, representing the whole process from sensing to acting in terms of physical, 
social-institutional, and mental affordances. This design principle makes it easier in joint 
efforts of humans and robots to flexibly share functions/operations within the 
heterogeneous human robot team. Especially important in our view is to assess the 
capabilities of the intended users and their mental models of the robots before designing 
the interface between high-level and lower-level layers of the robots involved. 

The planning process itself would be performed by a planner capable of 
coordinating actions of several agents, e.g., human and robot in a typical scenario 
(Alami et al. 1998). A specific option relevant for our design methodology is using an 
interactive planner (Ambite et al. 2002). Another technology that fits well to the 
approach presented here, consists of a perception module for the robot, which is 
designed according to affordance-based criteria (Moratz and Tenbrink this volume). 

6   Conclusions and Future Work 

In this paper we presented first steps towards a framework for knowledge representation 
for human-robot interaction. The key elements of this knowledge representation are three 
classes of affordances: physical, social-institutional, and mental affordances. In such 
representation action-relevant properties of the environment, spatio-temporal context, 
tasks, and capabilities of the spatial agents are modeled. Affordances become ‘first-class 
                                                           
5 Generally, a handicapped person wants to be supported only in functionalities that she cannot 

perform on her own. Nobody would like to be carried by a robot like a passive payload. 
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citizens’—to be seen as functional compounds—and allow for separating the perception 
and cognition of action possibilities from action performance. 

We propose a robot architecture that uses a hierarchical affordance-based 
representation in the deliberative layer of the robot control system. The interface of 
this deliberative layer to lower layers consists of invocation of action possibilities, 
which correspond to basic physical affordances. The benefit of this new architecture 
variant compared to more traditional ones that focus on physical constraints of the 
robots is that also action possibilities of human users can be modeled in the same 
way. Then a uniform affordance-oriented representation supports flexible sharing of 
functionalities between robots and humans. 

The next step regarding our approach will be building a simple dialogue system 
and simulated robots as in the system of Jones and Rock (2002). With this system we 
will focus on the extraction of affordances from the environment to be simulated and 
from human subjects who serve as test users. Another important direction for future 
work is the theoretical foundation of affordance hierarchies. These hierarchies span 
several levels, which are scale-dependent. For example, agents perceive and consider 
different affordances when planning a trip than when actually moving along 
crosswalks. In order to make it possible for agents to evaluate the utility of different 
affordances it will also be necessary to establish a theory of similarity measurement 
for affordances. Often, agents cannot utilize the best affordance for a given task due 
to various constraints but have to search for the second-best. Similarity measures will 
support this search because their outcomes are based on a continuous matching scale 
(Hahn and Chater 1998). Finally, it will be important to investigate how agents can 
learn different types of affordances based on previous interactions in spatio-temporal 
environments, and how these learned affordances influence future behavior.  
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Abstract. The concept of Ecology of Physically Embedded Intelligent
Systems, or Peis-Ecology, combines insights from the fields of autonomous
robotics and ambient intelligence to provide a new solution to building
intelligent robotic systems in the service of people. The concept of Peis-
Ecology also offers an interesting setting to study the applicability of Gib-
son’s notion of affordances to an ecology of robots. In this paper we
introduce this concept, anddiscuss its potential and implications both from
an application point of view and from an ecological (Gibsonian) point of
view. We also discuss some new scientific challenges introduced by a Peis-
Ecology, present our current steps toward its realization, and point at a few
experimental results that show the viability of this concept.

1 Introduction

In the classical view of autonomous robotics, the robot and the environment
are seen as two distinct entities. The environment is usually assumed to be
non-deterministic and only partially observable, and the robot can only interact
with it through its noisy sensors and unreliable actuators. This view is often
assimilated to a two-player antagonistic game, in which the robot has to find a
strategy to achieve its goal in spite of the “actions” taken by the environment.

In this paper, we take an ecological view of the robot-environment relationship
[2,11,10]. We see the robot and the environment as parts of the same system,
which are engaged in a symbiotic relationship. We assume that robotic devices
are pervasively distributed throughout the environment in the form of sensors,
actuators, smart appliances, RFID-tagged objects, or more traditional mobile
robots. We further assume that these devices can communicate and collaborate
with each-other by providing information and by performing actions. We call a
system of this type an Ecology of Physically Embedded Intelligent Systems, or
Peis-Ecology.

As an example, consider a robot trying to grasp a milk bottle. In a Peis-
Ecology, this robot would not need to use its camera to acquire the properties of
the bottle (shape, weight, etc.) in order to compute the grasping parameters — a
task which has proved elusive in decades of robotic research. Instead, the bottle

E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 106–121, 2008.
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itself, enriched with a radio-tag, would hold this information and communicate
it to the robot.

The Peis-Ecology approach offers a new paradigm to develop pervasive
robotic applications. As we shall discuss below, this paradigm has a great po-
tential to bring robotic technologies inside our homes and working places in the
service of humans. However, the development of Peis-Ecology entails a number
of new research challenges that need to be solved before this potential can be
fully exploited. Some of these challenges involve issues similar to what Gibson
[11] refers to as the problem of perceiving and exploiting the “affordances” of
the environment. The purpose of this paper is to introduce these research chal-
lenges, and to discuss how these relate to Gibson’s notion of affordance. We then
present some initial solutions to these challenges, which have been developed in
the context of a collaborative project between Sweden and Korea.

In the next section, we briefly recall the concept of Peis-Ecology, and discuss
its potential and implications from an application point of view and from an
ecological (Gibsonian) point of view. In the following sections, we discuss the
research challenges that this concept entails, and we summarize the current
progress in our realization of a Peis-Ecology. In the interest of space, we do not
give technical details or show full experiments in this paper, but we shall refer
the reader to the relevant papers in which these details and experiments are
reported. More information can also be found at the project web site [25].

2 The Concept of Peis-Ecology

The concept of Peis-Ecology, originally introduced by Saffiotti and Broxvall
[28], combines insights from the fields of ambient intelligence and autonomous
robotics to generate a radically new approach toward the inclusion of robotic
technologies into everyday environments. In this approach, advanced robotic
functionalities are not achieved through the development of extremely advanced
stand-alone robots, but rather through the cooperation of many simple robotic
components pervasively distributed in the environment.

2.1 Definitions

The concept of Peis-Ecology builds upon the following ingredients.
First, any robot in the environment is abstracted by the uniform notion of

Peis
1 (Physically Embedded Intelligent System). The term “robot” is taken here

in its most general interpretation: any device incorporating some computational
and communication resources, and able to interact with the environment via
sensors and/or actuators. A Peis can be as simple as a toaster or as complex
as a humanoid robot. In general, we define a Peis to be a set of inter-connected
software components residing in one physical entity. Each component can be
connected to sensors and actuators in that physical entity, as well as to other
components in the same Peis or in other Peis.
1

Peis is pronounced /peIs/ like in ‘pace’.
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Fig. 1. A simple example of Peis-Ecology

Second, all Peis are connected by a uniform communication model, which
allows the exchange of information among the individual Peis-components, while
hiding the heterogeneity of the Peis and of the physical communication layers. In
practice, we use a distributed communication model that combines a tuple-space
with an event mechanism (see Section 4.1 below).

Third, all Peis in an ecology can cooperate by a uniform cooperation model,
based on the notion of linking functional components: each participating Peis

can use functionalities from other Peis in the ecology to complement its own.
Functionalities here are meant to be modules that produce and consume infor-
mation, and may interact with the physical environment by means of sensors
and actuators. Typically, functionalities are in one-to-one correspondence to the
software components in a Peis.

Finally, we define a PEIS-Ecology to be a collection of inter-connected Peis,
all embedded in the same physical environment.

As an illustration of these concepts, consider an autonomous vacuum cleaner
in a home. (See Figure 1.) By itself, this simple Peis does not have enough
sensing and reasoning resources to assess its own position in the home. But
suppose that the home is equipped with an overhead tracking system, itself
another Peis. Then, we can combine these two Peis into a simple Peis-Ecology,
in which the tracking system provides a global localization functionality to the
navigation component of the cleaning robot, which can thus realize smarter
cleaning strategies. Suppose further that the cleaner encounters an unexpected
parcel on the floor. It could push it away and clean under it, but its navigation
component needs to know the weight of the parcel in order to decide this. This
information is difficult to obtain using the on-board sensors. If, however, the
parcel is equipped with a small device able to store and transmit information
(e.g., an RFID tag), then it can act as a Peis and communicate its weight
directly to the cleaner.

Given a Peis-Ecology, we call a set of connections between components within
and across the ecology a configuration of that Peis-Ecology. Figure 2 shows
the configuration of the ecology in our example. Note that all the connections
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Fig. 2. Functional view of the same Peis-Ecology

are mediated by a shared middleware (see Section 4.1). Importantly, the same
ecology can be configured in many different ways depending on the context —
e.g., depending on the current task, the environmental situation, and available
resources. In the above example, if the vacuum cleaner exits the field of view of
the cameras, then the ecology may be reconfigured to let it use its own odometric
component for localization.

2.2 Peis-Ecology from a Robotic Point of View

A Peis-Ecology redefines the very notion of a robot to encompass the entire en-
vironment: a Peis-Ecology may be seen as a “cognitive robotic environment” in
which perception, actuation, memory, and processing are pervasively distributed
in the environment. The complex functionalities of this environment are not de-
termined in a centralized way, but they emerge from the co-operation of many
simpler, specialized, ubiquitous Peis devices. The number and capabilities of
these devices do not need to be known a priori : new Peis can join or leave the
ecology at any moment, and their existence and capabilities should be automat-
ically detected by the other Peis.

The Peis-Ecology approach simplifies many of the difficult problems of current
autonomous robotics by replacing complex on-board functionalities with simple
off-board functionalities plus communication. In the vacuum cleaner example
above, the global localization of the robot is easily achieved by the static cameras;
and the best way to access the properties of the parcel is to store those properties
in the parcel itself.

The Peis-Ecology approach can also help us to address problems which are
beyond the capabilities of current robotic systems. As an example, consider a
mobile robot who should monitor a large home using an electronic nose (e-nose),
e.g., to spot degrading food, gas leakages, or other problems. The robot would
have to detect any anomalous odor, navigate to its source, and classify it. This
solution is not possible today due the current limitations of mobile olfaction.
First, the e-nose must be brought near the odor source in order to classify it, but
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locating an odor source by following the odor plume is still an unsolved problem.
Second, odor classification can only be done reliably if the number of possible
classes is small, but a realistic scenario may involve hundreds of objects (e.g.,
food types) each with its own range of possible odors. A Peis-Ecology solution
to this problem would be as follows. The environment is equipped with a number
of very simple (and cheap) e-noses placed at critical locations, e.g., inside the
refrigerator or near the cooker. These simple devices can detect an abnormal gas
concentration, but are unable to classify the type of odor. Relevant objects in
the environment (e.g., goods in the refrigerator) have RFID tags attached, which
contain information about the object itself, including its type. When a simple
e-nose detects an alarm, its location is sent to a mobile robot equipped with
a sophisticated (and expensive) e-nose. The robot navigates to that place, and
smells the different objects there. The information stored in the object’s tags is
communicated to the robot, and it provides a context to restrict the classification
problem. This solution has been explored and experimentally validated in a small
scenario [3].

In addition to simplifying technical problems, the Peis-Ecology approach can
also bring a number of pragmatic benefits. A Peis-Ecology is intrinsically mod-
ular, flexible and customizable. Users would only need to acquire new robotic
components as needed, e.g., starting with just a simple robotic vacuum cleaner
and adding new Peis devices according to their changing needs and desires.
Thus, the Peis-Ecology approach is likely to provide an affordable and accept-
able road to include robotic technologies in everyday environments. Since each
new Peis can combine its functionalities with those of the already exiting ones,
the value of the whole Peis-Ecology can increase more than linearly with its
cost.

The Peis-Ecology approach recognizes the fact that our environments are
increasingly populated by embedded devices and tagged objects. For instance,
Wal-Mart already requires that all commercial goods are equipped with an RFID
tag. These tags can carry a large amount of information about the objects in
the environment. In future, they may also be writable or may be able to trans-
mit sensor-based information. We claim that robots should exploit, rather than
ignore, the richness of this environment.

2.3 Peis-Ecology from an Ecological Point of View

Ecology is usually defined as the study of biological species in their relations
to each other and to their environment. Essential to an ecological perspective
is the fact that the relation between the animal and its environment is char-
acterized as a mutuality and a reciprocity [13]. We can conceive Peis-Ecology
in similar terms. A Peis-Ecology includes “animate” entities (Peis) embedded
in an “inanimate” environment (the non-Peis objects). Animate entities inter-
act with the inanimate environment using sensors and actuators. In addition,
they interact among them both using their sensors and actuators, and using
direct (digital) communication. A Peis-Ecology is heterogeneous, that is, it in-
cludes different species of animate entities. In the Peis-Ecology vision, humans
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constitute one of the species that can participate in the ecology, and interact
with the other Peis.

Different species in a Peis-Ecology may entertain different types of symbiotic
relations via the above cooperation model, that is, using each-other’s function-
alities. These relations include mutualism, in which the relation is advantageous
to both Peis; and commensalism, in which one Peis benefits while the other is
not affected.2 By exploiting the right symbiotic relations, a Peis-Ecology may
exhibit an emergent behavior that allows it to achieve tasks beyond those that
could be performed by any individual Peis in the ecology. A Peis-Ecology could
provide a good illustration of the famous quote by Margulis and Sagan [20] “Life
did not take over the globe by combat, but by networking”.

This ecological viewpoint is useful to understand the potential role of affor-
dances in a Peis-Ecology. The notion of affordance was introduced by James
J. Gibson as part of his ecological approach to perception [11]. What makes Gib-
son’s approach ecological is the fact that perception is studied as a phenomenon
which originates in the relation between the animal and its environment, as op-
posed to the many studies which look at perception as a process originating only
in the neuro-biology of the animal.

In Gibson’s terms, “the affordances of the environment are what it offers the
animal, what it provides or furnishes, either for good or ill” [11, p. 127]. Typical
examples include: a nearly flat solid surface (e.g., floor) affords support and
walking; a graspable rigid object of moderate size and weight (e.g., a stone)
affords throwing; and a rigid object with a sharp edge (e.g., a knife) affords
cutting. A naive application of the notion of affordance to a Peis-Ecology, then,
could identify the affordances of a Peis with the functionalities that this Peis

makes available to the rest of the Peis-Ecology. For instance, the ceiling tracking
system in the example above would afford “position tracking” to any Peis in
the environment. In order to allow other Peis to use its tracking functionality,
the tracking system should advertise this functionality in some way. As we shall
see in Section 4 below, this could be done using mechanisms similar to the ones
developed by the semantic web community. By receiving the advertisement, a
Peis would perceive the corresponding affordance. This is in accordance with
Gibson’s claim that affordances are not attributes that minds impose on the
world, but perceivable properties of the world.

The reason why the above solution is naive is that affordances are not objective
functional properties of objects, but they are always relative to a given agent.
For example, a leaf floating on a lake affords support and walking to an insect
but not to a human; and a stone affords throwing to a human but it may afford
hiding to a mouse. An affordance is an action possibility, and as such it depends
on the action capabilities of the actor. Therefore, an affordance should not be
seen as a property of an object in the environment, but as a relation between an
agent and that object.

2 Parasitism, which is advantageous to one Peis but detrimental to the other, might
also be needed in some case, e.g., if the goal of the first Peis is of primary importance
to the entire ecology.
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Correspondingly, a better view of an affordance in a Peis-Ecology is as a
relation between two Peis. Consider again the tracking system example. The
tracking Peis cannot advertise the general affordance “position-tracking” since
it cannot track any arbitrary object — e.g., it would be unable to track an object
which is too small, which is outside the field of view of the cameras, or whose
color cannot be distinguished from the floor. So, a more realistic advertisement
for this Peis would be: “I can afford position tracking to x, provided that x is
in my field of view, I am given its color and size signature, and these signatures
satisfy certain constraints”.

In some cases, an affordance is not provided by an individual Peis in the Peis-
Ecology, but by a set of Peis configured in a given way. In the above example,
the tracking system can be connected to a Peis-camera mounted on the ceiling
of another room: the combined system would then afford position-tracking to a
vacuum cleaner in that room. Often, we are mainly interested in what the whole
Peis-Ecology can afford to any given Peis. The question of which specific Peis

participates in providing a specific affordance is irrelevant to the Peis who uses
this affordance, and it only matters for the mechanisms that must configure the
Peis-Ecology by connecting Peis in the proper way.

This point of view is in line with Gibson’s in emphasizing that affordances
are possibilities which are in the environment, without necessarily being bound
to a specific object [11]. However, while for Gibson the presence of affordances is
independent of the ability of an individual to recognize them [22], in our case it
is important that each Peis in a Peis-Ecology is aware of what affordances are
present in the ecology. In practice, the Peis-Ecology should be equipped with
mechanisms that allow each Peis to dynamically discover what the ecology can
afford to it, and to exploit those affordances. (See Section 4.3.) In this sense, the
view of affordances adopted here is somehow closer to the one put forward by
Donald Norman [23] in the field human machine interaction. Norman’s definition
of an affordance also takes into account the actor’s ability to perceive it, as well
as the needs and goals of the actor [21].

3 Challenges of Peis-Ecology

The above discussion suggests that the Peis-Ecology approach has a great po-
tential to bring robotic technologies inside our homes and working places. Before
this potential can be fully exploited, however, there are several fundamental re-
search challenges that need to be addressed. In this section, we focus on those
challenges that are more directly related to the notion of affordance.

3.1 Integrating the Physical and the Digital World

In a classical robotic system, the robot’s interaction with the environment and
its objects is physically mediated: properties of the objects are estimated using
sensors, and their state can be modified using actuators. In a Peis-Ecology, a
robot (Peis) can interact with an object (another Peis) both physically and
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digitally: the robot can directly query properties from the object, and it can
ask it to perform an action. How to coordinate and integrate these two forms of
interaction is a new research problem.

The above problem also applies to the perception and use of affordances. In a
standard robotic setting, the robot would perceive affordances based solely on its
sensor input. (Actually, in Gibson’s view affordances are the first thing which is
perceived about an object, even before its qualities [11, p. 127].) By contrast, in
a Peis-Ecology both the qualities of a Peis and its affordances can be acquired
through physical sensing, through digital communication, or both.

Consider a robot in a Peis-Ecology, which is facing a closed door. The robot
would need to know if this door affords the action of being opened. Suppose that
the robot is aware that there is a Peis in the Peis-Ecology, with ID = Peis-301,
which offers the affordance to ‘open’. If the robot can establish that the door in
front of it is the same physical object as Peis-301, then the robot will also know
that the door in front of it affords opening, by linking the (digital) affordance
‘open’ of Peis-301 with the (physical) affordance ‘open’ of that door. Further-
more, it will know that in order to open that door it needs to send the request
<open> to the Peis with ID = Peis-301.

3.2 Self-configuration

Perhaps the strongest added value of a Peis-Ecology comes from the ability to
integrate the functionalities available in the different Peis according to a given
configuration, and to automatically create and modify this configuration depend-
ing on the current context. Here, the relevant contextual conditions include the
current task(s), the state of the environment, and the resources and affordances
available in the ecology. Self-configuration is the key to flexibility, adaptability
and robustness of the system — in one word, to its autonomy. Although much
work has been done in several fields on the principles of self-configuration (e.g.,
ambient intelligence [14], web service composition [26], distributed middleware
[6], autonomic computing [31]), no satisfactory solution exists.

An essential requirement for self-configuration is that the Peis-Ecology as a
whole should have the capability to reflect on its own status, e.g., to be aware of
the functionalities and affordances in it, and of their current availability. In the
scenario in Figure 1, the Peis-Ecology should determine, at the system-level,
that there is a Peis (the camera system) which can afford position tracking to
the vacuum cleaner, in order to decide to connect that system to the cleaner.
This requires that the Peis-Ecology incorporates mechanisms to discovery the
affordances present in it, to decide which affordances should be exploited, and
to create a corresponding configuration.

As an important part of self-configuration, a Peis-Ecology should incorporate
mechanisms to dynamically adapt to a changing environment and new situations.
These mechanisms should be able to discover and exploit new affordances when
they become available, and to compensate for affordances that are no longer
available.
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3.3 The Human Dimension

A Peis-Ecology is meant to operate in the presence of, and in the service of,
humans. It is therefore essential that the development of a Peis-Ecology take
into careful consideration the place of the humans in it.

The way in which a Peis-Ecology interfaces with the human inhabitants is
critical to its usability and acceptability. Humans should perceive the Peis-
Ecology either as one entity, or as a set of individual Peis, depending on the
context. In either case, they should use similar interaction modalities, and expe-
rience a natural interaction in compliance with social rules. The humans should
also be made aware of what the Peis-Ecology can afford to them, with special
emphasis on those affordances which are most relevant given the current context.

In the reverse direction, a Peis-Ecology should be able to incorporate humans
among its parts, and to operate in symbiosis with them [8]. It should be able
to infer the status and intentions of humans from observations, and adapt its
behavior to that. For instance, if a human shows the intention to relax, the
vacuum cleaner should move to a different room. A Peis-Ecology should also be
able to infer what the humans can afford to it: for instance, the vacuum cleaner
could ask the human to empty its dust-bag if it knows that the human can
afford that. Ideally, it should also be able to smoothly update its model of what
a human user can afford to adapt to changes in this user, e.g., growing older.

4 Progress Toward a Peis-Ecology

The above challenges involve hard long-term research problems, and even rela-
tively small steps are crucial to the realization of the Peis-Ecology vision. In this
section, we hint at the initial solutions to these challenges that have developed
in the framework of our project [25], and we discuss the role of affordances in
these solutions. Detailed descriptions of the proposed methods and of the results
achieved are omitted, but can be found in the referenced papers.

4.1 The Peis-Ecology Middleware

As a prerequisite to develop practical Peis-Ecology systems, we need to establish
mechanisms that allow different Peis to communicate and cooperate, by imple-
menting the models discussed in Section 2.1 above. These mechanisms should
account for the inherent heterogeneity of a Peis-Ecology, which may include
devices that rely on different hardware and software platforms and use different
communication media; and for its inherent dynamics, in that Peis may join and
leave the ecology at any time.

In our work, the above mechanisms are implemented in a middleware called
the Peis-kernel [4]. This provides uniform communication primitives, and per-
forms services like network discovery and routing of messages between Peis on a
P2P network. The Peis-kernel also implements a communication model based on
a distributed tuple-space, endowed with the usual insert and read operations.
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In addition, it provides event-based primitives subscribe and unsubscribe, by
which a Peis-component can signal its interest in a given tuple key. When an
insert operation is performed, all subscribers are notified. Subscription, notifica-
tion, and distribution of tuples are managed by the Peis-kernel in a way which
is transparent to the Peis-component. Hybrid tuple/events approaches of this
type are increasingly used in ubiquitous computing and in ambient intelligence
[1,30].

The Peis-kernel can cope with the fact that Peis may dynamically join and
leave the ecology. At any moment, each Peis-component can detect the presence
of other components and trade with them the use of functionalities. For instance,
if the navigation component in the vacuum cleaner in Figure 2 above requires
a localization functionality, it simply looks for a tuple announcing a compatible
functionality in any Peis-component: if one is found, then that component is
booked and a subscription to it is created. Compatibility is decided using a
shared Peis-Ontology, as described in Section 4.3 below.

The Peis-Ecology middleware has been released as open-source under a set
of GNU licenses, and it is available from the project website [25].

4.2 Integrating the Physical and the Digital World

Our approach to cope with this challenge is based on an extension of the concept
of perceptual anchoring [7]. Anchoring is the process of connecting, inside an
intelligent system, the symbols used to denote an object (e.g., box-4) and the
percepts originating from the same objects (e.g., a green blob in the camera
image).

In a Peis-Ecology, anchoring must connect the perceptually acquired infor-
mation about the properties of an object, and the information about that object
which is provided by the object itself. Consider for instance the situation shown
in Figure 3. The robot is seeing a green Peis-box, which it has internally labeled
as box-4. The box could afford pushing to the robot, provided that its weight is
low enough. How can the robot decide that, in order to know the weight of that
box it has to read the weight property from the Peis with ID= Peis22?

Fig. 3. Linking perceptual information and digital information in a Peis-Ecology



116 A. Saffiotti and M. Broxvall

We use a mechanism similar to the Find primitive used in the anchoring frame-
work [7]. The robot queries the tuple-space for all PhysicalRepresentation
tuples of each Peis in the ecology (each Peis must publish this tuple by conven-
tion). It then tries to match these tuples to the perceived properties of the box
in front of it, e.g., being box-shaped, green, and of a certain size. The matching
succeeds for the Peis with ID = Peis22. Once this is done, the robot can ask
additional properties to Peis22 (e.g., its weight) and combine these properties
with the observed ones, e.g., to decide if the box can afford pushing. (See [27]
for an interesting variation of this scenario.)

The above scenario was tested in a concrete experiment, reported in [4].
Figure 4 shows two snapshots from the execution of that experiment. More
in general, the above mechanism can be used to combine perceptual and sym-
bolic information about the same object coming from several different Peis.
More details about the use of perceptual anchoring in a Peis-Ecology setting
are provided in [16].

4.3 Self-configuration

The problem of self-configuration is a hard open problem for autonomous sys-
tems in general, and for distributed robotic systems in particular. In a Peis-
Ecology, this problem is exacerbated by the fact that a Peis-Ecology is highly
heterogeneous and intrinsically dynamic.

Our current approach to self-configuration is partly inspired by work in the
field of web service composition [26]. It is based on the following ingredients (see
[12] for a more detailed description).

– An advertising mechanism that allows any Peis to dynamically join the
ecology and let all the other Peis know about the functionalities it can
provide.

– A discovery mechanism that allows each Peis to find which other Peis can
provide a functionality compatible with its needs.

– A configuration mechanism able to create a configuration for a given task
by composing functionalities from different Peis.

Fig. 4. A robot querying and then pushing a Peis-box through a doorway
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Fig. 5. Outline of our self-configuration framework

– A monitoring mechanism able to change the configuration if these function-
alities become unavailable.

The above mechanisms help to cope with the dynamic aspect. To help coping
with the heterogeneity aspect, we also need an ontology, which allows us to
describe in a uniform way the functionalities provided by each Peis in the ecology
and the data on which they operate, and to define the notion of compatibility
used by the discovery mechanism.

Figure 5 illustrates our approach. Every Peis is provided with a local di-
rectory of descriptions D and with a special component M that can access the
descriptions and advertise them to the rest of the ecology. Some Peis can be
equipped with a special configurator component, denoted by Conf, that is ca-
pable of retrieving the descriptions and computing a meaningful configuration
based upon the information stored in them. The configurator also takes care
of deploying and monitoring the generated configuration. For the monitoring
part, the configurator subscribes to fail signals from the connected Peis, and
re-triggers the configuration algorithm if any Peis drops from the configuration
for any reason.

Note that not all Peis need to include a configurator, and that multiple config-
urator components can exist in the ecology. Whenever a Peis needs to generate
a configuration to perform a task, it asks the service of an available configurator
component. In terms of affordances, the role of the Conf component is to dis-
cover the relevant affordances for the task by (1) asking the right queries, and
(2) selecting the right descriptions. Note that the found affordances can be either
provided by a single Peis, or by a suitable configuration of a set of Peis: this
is irrelevant to the querying Peis, for which the found affordances are simply
provided by the Peis-Ecology as a whole.

The configurator component can be implemented using different approaches.
In our project, we are exploring two complementary approaches for that. The
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Fig. 6. Two views of the Peis-Ecology testbed

first is a plan-based, centralized approach [19]. In this approach, we use a global
hierarchical planner to generate the (minimum cost) configuration for a given
task. The second is a reactive, distributed approach [12]. In this approach, the
configurator creates a local configuration, and assumes that the connected Peis

are able to recursively extend this configuration if needed. If they are not, the
configurator receives a fail signal and tries a different local configuration. Both
approaches provide some simple form of self-repair: if a Peis signals that a
functionality used in the current configuration is not available any more, the
configurator tries to generate an alternative configuration.

The two approaches have the typical complementary strengths and weaknesses
of plan-based and reactive approaches. The plan-based approach is guaranteed
to find the optimal configuration if it exists, but it has problems to scale up and
it cannot easily cope with changes in the ecology. The reactive approach scales
up smoothly and it can quickly adapt to changes in the state of the ecology,
but it might generate non-optimal configurations and it might fail to find a
configuration even if one exists. Eventually, we hope to be able to combine these
two approaches into a hybrid configurator.

4.4 The Human Dimension

In order to validate the utility and acceptability of a Peis-Ecology for humans,
we have built a physical testbed facility, called the Peis-Home, which looks like
a typical Swedish bachelor apartment (Figure 6). The Peis-Home is equipped
with a communication infrastructure and with a number of Peis, including static
cameras, mobile robots, multi-media devices, sensor nodes (motes), a refrigerator
equipped with gas sensors and an RFID reader, and many more. We have used
this testbed to run several experiments, including some involving perceptual
anchoring [4] and some reproducing the olfaction scenario discussed in Section 2.2
above [3].

Work more directly concerned with the inclusion of humans into a Peis-
Ecology has just started at the time of this writing. Our approach is to see
humans as just another species of Peis in the ecology, which may use the
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affordances provided by the rest of the Peis-Ecology, and may provide affor-
dances to it. What makes humans a peculiar type of Peis is that their goals and
desires have a high priority status, and that they need to use dedicated human
interface components to communicate with the rest of the ecology. Currently, we
are exploring the use of template-based interface components to select, and make
visible to the users, the affordances of the Peis-Ecology which are relevant to
the current context [5]. For instance, when a human sits on the sofa after dinner,
the affordances of bringing a drink, bringing the phone, or playing music, are
made available to her. When the same human leaves the house, the affordances
of patrolling the house or keeping the house warm are offered instead.

5 Conclusions

The idea to integrate robots and smart environments is starting to pop up at
several places and under several names, including network robot systems [24],
intelligent space [17], sensor-actuator networks [9], ubiquitous robotics [15], ar-
tificial ecosystems [29], and still others. A few projects were recently started
with the aim to explore the scientific, technological and practical implications of
this integration. Currently the largest efforts are probably the Network Robot
Forum [24], the U-RT project at AIST [18], and the Korean Ubiquitous Robot
Companion program [15]. The Peis-Ecology project presented in this paper is
part of the latter effort. This project is distinct in its emphasis on the study of
the fundamental scientific principles that underly the design and operation of an
ubiquitous robotic system.

In this paper, we have discussed the strong potential of the Peis-Ecology ap-
proach, as well as the main research challenges that it entails. We have also dis-
cussed how Gibson’s notion of affordances enters in a Peis-Ecology. Although the
Peis-Ecology approach was developed independently, the notion of affordances
provides some interesting insights on the mechanisms by which a Peis-Ecology
may gain awareness of the opportunities which are available in it, and use this
awareness to self-configure and to interact with a human user. These are im-
portant open issues in the development of a Peis-Ecology, and we plan to use
these insights in our future work to address those issues. While this paper has
focused on the Peis-Ecology approach, we believe that many of these insights
can also apply to other approaches to ubiquitous robotic systems, like the ones
listed above.

Acknowledgments

This work is supported by the Swedish Research Council (Vetenskapsr̊adet),
and by ETRI (Electronics and Telecommunications Research Institute, Korea)
through the project “Embedded Component Technology and Standardization
for URC (2004-2008)”. Many thanks to Marco Gritti, Donatella Guarino, Kevin
LeBlanc, Amy Loutfi, Robert Lundh and Beom-Su Seo for their invaluable help.



120 A. Saffiotti and M. Broxvall

References

1. Arregui, D., Fernstrom, C., Pacull, F., Gilbert, J.: STITCH: Middleware for ubiq-
uitous applications. In: Proc. of the Smart Object Conf., Grenoble, France (2003)

2. Barker, R.G.: Ecological psychology. Stanford University Press, Stanford, CA
(1968)

3. Broxvall, M., Coradeschi, S., Loutfi, A., Saffiotti, A.: An ecological approach to
odour recognition in intelligent environments. In: Proc. of the IEEE Int. Conf. on
Robotics and Automation, Orlando, FL, pp. 2066–2071 (2006)

4. Broxvall, M., Gritti, M., Saffiotti, A., Seo, B.S., Cho, Y.J.: Peis ecology: Integrating
robots into smart environments. In: Proc. of the IEEE Int. Conf. on Robotics and
Automation, Orlando, FL, pp. 212–218 (2006)

5. Broxvall, M., Loutfi, A., Saffiotti, A.: Interacting with a robot ecology using task
templates. In: Ro-Man. Proc. of the IEEE Int. Symp. on Robot and Human Inter-
active Communcation Jeju island, Korea (2007)

6. The JXTA community. The project JXTA web site, http://www.jxta.org
7. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics

and Autonomous Systems 43(2-3), 85–96 (2003)
8. Coradeschi, S., Saffiotti, A.: Symbiotic robotic systems: Humans, robots, and smart

environments. IEEE Intelligent Systems 21(3), 82–84 (2006)
9. Dressler, F.: Self-organization in autonomous sensor/actuator networks. In: Proc.

of the 19th IEEE Int. Conf. on Architecture of Computing Systems (2006)
10. Duchon, A.P., Warren, W.H., Kaelbling, L.P.: Ecological robotics. Adaptive Be-

havior 6(3), 473–507 (1998)
11. Gibson, J.J.: An ecological approach to visual perception. Houghton Mifflin,

Boston, MA (1979)
12. Gritti, M., Broxvall, M., Saffiotti, A.: Reactive self-configuration of an ecology of

robots. In: Proc. of the ICRA Workshop on Networked Robot Systems, Rome, Italy
(2007)

13. Heft, H.: Ecological Psychology in Context. Lawrence Erlbaum Associates, Mah-
wah (2001)

14. Kaminsky, A.: Infrastructure for distributed applications in ad hoc networks of
small mobile wireless devices. Technical report, Rochester Institute of Technology,
IT Lab, ( May 2001)

15. Kim, J.H., Kim, Y.D., Lee, K.H.: The third generation of robotics: Ubiquitous
robot. In: Proc. of the 2nd Int. Conf. on Autonomous Robots and Agents, Palmer-
ston North, New Zealand (2004)

16. LeBlanc, K., Saffiotti, A.: Issues of perceptual anchoring in ubiquitous robotic
systems. In: Proc. of the ICRA Workshop on Omniscent Space, Rome, Italy (2007)

17. Lee, J.H., Hashimoto, H.: Intelligent space – concept and contents. Advanced
Robotics 16(3), 265–280 (2002)

18. Lemaire, O., Ohba, K., Hirai, S.: Dynamic integration of ubiquitous robotic systems
using ontologies and the rt middleware. In: Proc. of the 3rd Int. Conf. on Ubiquitous
Robots and Ambient Intelligence, Seoul, Korea (2006)

19. Lundh, R., Karlsson, L., Saffiotti, A.: Plan-based configuration of an ecology of
robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Rome, Italy,
pp. 64–70 (2007)

20. Margulis, L., Sagan, D.: Microcosmos. Summit Books, New York (1986)
21. McGrenere, J., Ho, W.: Affordances: Clarifying and evolving a concept. In: Proc.

of the Graphcis Interface Conf., Toronto, pp. 179–186 (2000)

http://www.jxta.org


Affordances in an Ecology of Physically Embedded Intelligent Systems 121

22. Michaels, C.F: Affordances: Four points of debate. Ecological Psychology 15(2),
135–148 (2003)

23. Norman, D.: The Design of Everyday Things. Basic Books (1988)
24. Network Robot Forum. www.scat.or.jp/nrf/English/
25. The PEIS ecology project. Official web site, www.aass.oru.se/∼peis/

26. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proc.
of the 1st Int. Workshop on Semantic Web Services and Web Process Composition,
San Diego, California, USA (2004)

27. Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome,
E., Doherty, P., Dorffner, G., Hertzberg, J. (eds.) Towards Affordance-Based Robot
Control. LNCS, vol. 4760, pp. 106–121. Springer, Heidelberg (2007)

28. Saffiotti, A., Broxvall, M.: PEIS ecologies: Ambient intelligence meets autonomous
robotics. In: sOc-EUSAI. Proc. of the Int. Conf. on Smart Objects and Ambient
Intelligence, Grenoble, France, pp. 275–280 (2005)

29. Sgorbissa, A., Zaccaria, R.: The artificial ecosystem: a distributed approach to
service robotics. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp.
3531–3536 (2004)

30. Siegemund, F.: A context-aware communication platform for smart objects. In:
Proc. of the Int. Conf. on Pervasive Computing (2004)

31. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,
J.O., White, S.R.: A multi-agent systems approach to autonomic computing. In:
Proc. of the Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 464–
471 (2004)

www.scat.or.jp/nrf/English/
www.aass.oru.se/~peis/


E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 122–139, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Use of Affordances in Geospatial Ontologies 

Sumit Sen 

University of Münster, Robert-Koch Str. 26, 48149 Münster, Germany 
sumitsen@uni-muenster.de   

Abstract. Affordances are important constituents of our knowledge about 
geospatial artifacts. They should be seen as complementary to the knowledge of 
functions of various agents in respect to the geospatial artifacts. While functions 
combine to form complex activities in which agents can participate, affordances 
can be nested, or sequential in nature. We extract nested and sequential 
affordances based on statistical analysis of formal texts to construct hierarchies. 
Our approach considers affordances of classes of artifacts and thus is relevant to 
specifications of ontologies. The use of such affordances in function based 
ontologies is demonstrated using a Road ontology example. The implication of 
this work can be seen in the building of ontologies used by a robotic vehicle for 
autonomous driving.   

Keywords: Affordances, geospatial ontologies, text analysis.  

1   Introduction 

The term affordance refers to those uses of an object which can be readily perceived. 
In the context of a human agent, such uses are closely related to the experiences of the 
objects. This notion of experience of any object has strong relevance to the meaning 
of “places”. “Places” are reported to be a combination of the concept of a “space” 
along with the “meaning” implied by that “space”. The “meaning” of “places” is 
expressed by a combination of factors but which are primarily related to the 
perception related to uses and experiences of a human in that “place”.  

Simply put, affordances1 are core constituents of what defines a place. Geospatial 
ontologies which seek to provide semantic interoperability among users of geospatial 
information from different domains [1] need to include such information and such a 
need has been discussed by [2]  

The notion of affordance was first suggested by Gibson [3] in his theory of 
perception and was later re-articulated by Norman [4] in the field of interface design. 
For Gibson, affordances are objective, actionable properties of objects in the world. 
For an animal to make use of the affordance, it must of course perceive it in some 

                                                           
1 The term ‘affordance’ is used in a broader sense which encompasses the notion of functions 

and perceived affordances of entities. Normally, ‘functions’ are used to represent designed 
behavior of entities and ‘affordances’ to represent perceived uses or functions of the same. In 
this paper we shall use the term ‘affordance’ to accommodate both based on the assumption 
that designed behaviors or ‘functions’ are usually a part of the perception. We provide some 
further discussion in section 4. 
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way, but for Gibson, the affordance is there whether the animal perceives it or not; an 
unperceived affordance is waiting to be discovered. For Norman, affordances become 
perceived and culturally dependent. That is, rather than viewing the relationship 
between sensory object and action as an independent property of the object + animal 
system, this relationship is contingent, dependent on the experiences of the perceiver 
within some cultural framework. For example, for a person who has spent the last 10 
years driving on expressways in the US, expressways afford the action of driving up 
to 65 mph. It would not be possible for such a person to perceive a road where the 
maximum speed limit is 40 km/h as an expressway.  

Extracting knowledge about affordances is a difficult process and the first challenge is 
to understand that such knowledge is probabilistic in nature and differs from person to 
person. The affordances are perceived at a certain point in time and are amenable to 
revision. Some affordances are not yet learnt and some are “unlearnt” over time (and also 
the learning of ‘non-affordances’). At the same time it is important that communities 
have common notions about publicly shared entities. Public places and affordances of 
such places have such shared notions. Formal texts such as traffic code texts are 
important sources of such shared knowledge. Traffic code texts have both legal binding 
as well as well as an instructive sense which defines what actions should be done (or not 
be done) in relation to elements of the road network.  

The notion of affordances allows two possibilities in the process of identifying 
objects in a given environment with respect to a human agent. The first option 
concurs with conventional categorization principles which identify objects as 
members of certain categories based on their physical structures such as boundaries 
and features. Such categorization results in classes such as Footpaths, Motorways, etc. 
According to this first option human agents visualize the environment as objects and 
attach affordances as we learn them.  

Contrastingly a second option is to see the environment in terms of the affordances 
(and non-affordances) and identify objects based on them. The distinction of 
categories could be based on a single affordance notion (for example we can 
categorize walkable and non-walkable areas on a road network as opposed to 
Footpaths and Roads) and also bundles of affordances in the form of multiple 
affordances which could also be nested in one another (for example ‘non parkable 
areas’. Parking entails ‘stopping the car’ and ‘walking’ and hence is an example of 
nested affordance). 

In this paper we present a case study of extracting knowledge about affordances of 
road network entities, which includes notions of nested and sequential affordances. 
We conduct analysis of two traffic code texts based on a word co-occurrence model 
and discuss the possible options to integrate such information in geospatial 
ontologies. The work of Kuhn [2] serves as an inspiration of this work but has several 
extensions to the original approach including automated text analysis and quantitative 
values for affordances discussed later in the paper. 

The remaining of this paper is arranged as follows. In this § we provide further 
introduction to the motivation of this work and some background of previous work in 
this area. § 2 describes concepts of text analysis useful for extraction of affordances. 
The case study involving extraction of entity terms and the functional terms from two 
traffic code texts is described in § 3. We discuss the results of the case study and 
difficulties to integrate the different levels of affordance in the subsequent section. 
Finally we present some conclusions and outlook for future work in this area. 
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1.1   Motivation 

Geospatial ontologies have evolved as the knowledge sharing tool to ensure semantic 
interoperability among Geographic information systems. Web based geospatial 
services which provide data as well as processing to potential user communities have 
become popular with the introduction of standards such as Web Mapping Services 
(WMS) and Web Feature Services (WFS) [5]. The explosion of such services has 
increased the availability of geospatial data from a variety of sources ranging from 
geo-sensors [6] and spatial data infrastructures [7]. The need to address semantic 
interoperability issues in such increased sharing of geospatial information has led to 
numerous attempts of developing geospatial ontologies. Agarwal [1] surveys various 
approaches towards geospatial ontologies and concludes that currently no consensual 
shareable ontology exists.    

 

Fig. 1. Hierarchy of action concepts based on entailment relations. The concepts also reflect the 
hierarchy of affordances and thus the topmost concepts like go and move are afforded by most 
elements of the road network [8]. 

One of the important distinctions that can be found in the approaches towards 
geospatial ontologies is that of the precedence given to affordance concepts as 
opposed to the entity concepts expressed in the ontology. Hierarchies of action 
concepts have been reported independently of the hierarchies of entities concepts [2] 
as shown in the figure 1 below. It is important to note that the action concepts assume 
a human agent in a road network environment. 
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The information about what you can do on a certain road is closely related to 
providing meaning to the given physical space. Such arguments are supported by 
theories in human geography which suggest that human actions provide meanings to 
‘Places’ as opposed to ‘spaces’ where they are located[10]. 

The overall motivation of this case study is to extract such meanings and support the 
hypothesis that, the inclusion of knowledge of affordances in geospatial ontologies 
improves precision and recall for queries, within the ontology. For this paper, however, 
we shall concentrate on the aspect of extraction of affordance concepts and their values, 
in respect to entities in a road network. 

1.2   Background 

The term ‘Action-driven ontologies’ was first coined by Gilberto Camera et al [10] to 
address the intentionality perspective in categorizing the fiat and bona-fide objects in 
geospatial ontologies. The view of affordances of geospatial entities should be 
considered complimentary to that of actions, and is taken in a broader sense as it 
appears in ontology literature. Affordances are those properties by virtue of which 
entities afford certain actions.  

Cai [11] has shown that meaning of geospatial data and processing is dependent on the 
problem solving activities. Timpf [12] maintains that geography activity models help to 
disambiguate semantics of data in a particular domain. Kuhn [2] postulates that 
geospatial ontologies need to be designed with a focus on human actions and activities in 
geographical spaces. The assumption underlying this approach is that increasingly 
complex activities are a precursor to increasingly complex conceptualizations of the 
environment and that such a paradigm ensures that ontologies are both concise and 
related to human activities. Thus as thumb rule concepts of functions are less in number 
than concepts of entities.  

Knowledge sharing about the functionality of engineering artifacts in the 
manufacturing domain has been discussed by Kitamura et al [13]. It shown that an 
ontological framework for functional knowledge helps interoperability of design data 
in the form CAD/CAM diagrams. In the context of this discussion two aspects of the 
use of term function can be seen. 

• Function as the intended behavior of an artifact 
• Function as the Role played by the artifact in a given context 

The main point of distinction about these two is the contention that function could 
be available to an artifact by design or it might be based on its ability to play a certain 
role. The later is parallel to the notion of affordances [3]. Although it is beyond the 
scope of this paper to consider the complex relation between design and affordance 
[14] it is necessary to state that our view on affordances considers both aspects. We 
assume that our perception of affordances does include the notion of designed 
functions as well. A far more serious assumption that concerns this paper is related to 
the absoluteness of affordances. Affordances cannot be said to be absolute and they 
change based on the physical state and constraints of the human agent. However it is 
equally true that certain aspects are more salient in respect to the ‘concept’ of a 
certain entity and therefore in the context of a Road, the affordance of driving a car is 
more significant in most situations than other ones such as the affordance of an 
aircraft landing. 
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As already discussed, actions are described to have entailment relations between 
themselves, which tends to lead us to action hierarchies as described in figure 1. A 
similar hierarchy, in relation to the German Traffic Code is shown by Kuhn [2]. The 
fundamental aspect here is to recognize the hierarchical structure of actions as 
described in activity theory [15] and recognize the related notion of nested and 
sequential affordances. This is particularly important while considering that such 
information is not integrated in conventional ontologies which treat functional 
properties or affordances as yet another property of an entity. 

Finally, we have also to consider the separation of the notions of affordances into 
those which are strictly physical (constrained by physical laws) and those governed 
by socio-legal frameworks. Raubal [16] distinguishes affordances into physical, social 
and mental categories which are regulated by respective constraints. Zhang and Patel 
[17] discuss another mechanism to segregate affordances into Biological, Physical, 
Perceptual, Cognitive and mixed ones2. In the legal-instructive framework of traffic 
codes, it is imperative that our affordances are mixed and are bound by both physical 
and social constraints. They are also partly cognitive and also perceptual. It is often 
that physical affordances and social affordances are involved in a nested or a 
sequential relation.  

Sequential affordances are defined as affordances that are revealed over time after 
a previous action has been afforded. Similarly ‘nested affordances’ are grouped in 
space [18]. Such affordances are critical in the context of complex actions and their 
affordance by entities. We shall use these concepts to encode the hierarchies of 
affordances in our case study.     

1.3   Traffic Codes as Knowledge Sources for Affordances 

Analysis of formal documents relevant to the domain are important in this aspect. 
Traffic code texts are a good source to develop hierarchies of activities in 
geographical space [19], [2]. Such texts are important sources to develop the theory of 
how activities are structured in the context of a particular domain. Kuhn [2] analyses 
one particular traffic code (namely the German traffic code text) and provides a 
stepwise methodology to design ontologies in support of activities. These steps 
include  

♦ Part of Speech tagging of the given text3. 
♦ Frequency analysis of verbs and related occurrences such as gerunds etc 

to generate a first list of action terms. 
♦ Merging synonymous cases including those with different words but a 

similar sense of use. 
♦ Searching for entities which afford these actions. These are typically 

nouns and noun forms. 
♦ Cross tabulation of entities and affordances based on their co-

occurrence in the text and based on manual inspection. 
♦ Generation of action hierarchies based on entailment relations. 

                                                           
2 Note that such categorization of affordances not only helps to organize the affordances but 

also recognize the lack of affordances in a certain category. 
3 In the event of using manual analysis, this may be still serve as an important to guide the 

person analyzing the text. 
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Although these steps appear simple and straightforward, there are many challenges 
to automate such steps. We discuss these details, along with our adaptations of these 
steps in our case study in section 3.2. 

2   Text Analysis for Affordance Extraction 

We have introduced the steps suggested by Kuhn [2] for text analysis above. In this 
section we discuss some of the important aspects of such analysis in terms of natural 
language processing techniques that are used in our case study. 

It is important to note that affordances are usually learnt by agents while 
interacting with its environment and the same object loses some of its affordances 
when it is located in the vicinity of another object with different affordance 
properties4. Thus it is intrinsically difficult to assign an affordance to an object at the 
class level. We therefore borrow from the idea of mental affordances and assume that 
traffic codes describe the actions that can be afforded on the road network. The 
information is therefore related to the society as such and is also complete and 
consistent. This means that unlike the perceptions of individuals in a society the 
traffic code does not contain contradictory perceptions. 

Traffic code texts are important sources of learning traffic rules (besides others 
such as peer advice, driving schools, etc) for any individual not familiar with them. 
They play both roles of legal and instructive texts. Unlike documentation about 
various types of roads based on their width and surface, it provides information about 
the actions that can take place on them. 

2.1   Part of Speech Tagging 

Verbs and verb forms have special relevance in comprehension of affordances from 
the formal texts. Gibson’s definition of the term affordance provides a clear link 
between verbal phrases and affordances. 
 

“The affordances of the environment are what it offers the animal, what it 
provides or furnishes, either for good or ill. The verb to afford is found in 
the dictionary, but the noun affordance is not. I have made it up…” [3]. 

 

The close relation between verbs and verb forms are also shown by Kaschak and 
Glenberg [20]. It is therefore useful to probe the syntactic structure of the traffic code 
before proceeding to the semantic aspect. We use an online part of speech (POS) 
tagger based on genetic algorithms in order to distinguish the verbs and verb forms. 
The GAMBL [21] POS tagger also provides Word Sense Disambiguation (WSD) in 
order to isolate different senses of the words used. The tool uses the WordNet 
electronic lexicon [22] to report the different types of senses. 

Sample output of the tagged text is shown in table 1 shown below. Part of speech 
tags based on the Penn Treebank Set [23], the sense of the word and the relation to 
other words in the sentence are provided in the table. The relevant verb and verb 
forms to be analyzed are: VB (Verb, base form), VBD (Verb, past tense), VBG (Verb, 
gerund or present participle), VBN (Verb, past participle), VBP (Verb, non-3rd 
person singular present), VBZ (Verb, 3rd person singular present). 
                                                           
4 See discussion on ad-hoc categories[38]. 
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Table 1. Part of tagged output text from GAMBL for NYDM (token 179-189) 

# Token LemmaPOS Chunk Relation Sense Sense Definition
179 You you PRP NP-B NPSBJ-B no-sense
180 must must MD VP-B VP-B no-sense

181 come come VB VP-I VP-I come%2:38:04::

reach a "destination " arrive by
movement or by making "progress "
"She arrived home at 7 o'clock " "He
got into college " She didn't get to
Chicago until after midnight

182 to to TO PP-B PNP-B no-sense
183 a a DT NP-B PNP-I no-sense

184 stop stop NN NP-I PNP-I stop%1:11:00::

the event of something "ending " it
came to a stop at the bottom of the
hill

185 before before IN PP-B PNP-B no-sense
186 the the DT NP-B PNP-I no-sense

187 stop stop NN NP-I PNP-I stop%1:11:00::

the event of something "ending " it
came to a stop at the bottom of the
hill

188 line line NN NP-I PNP-I line%1:06:00::

something (as a cord or rope) that
is long and thin and "flexible " a
washing line

189 , , , , , no-sense  

The challenge in the next step is to find the affordances related to these verbs and 
hence identify the objects which afford them. 

2.2   Identification of Actions and Entities 

Frequency analysis of nouns and verbs results in a list of most significant entity and 
action terms in the traffic code text. This is combined with manual inspection of such 
occurrences for the less frequent ones. 

Since our overall objective is to inspect affordances of road network artifacts and 
their affordances in the context of action concepts in relation to humans, we 
concentrate on 

(i) high frequency road network entity terms (noun forms) 
(ii) high frequency action terms (verb forms) related to the entity terms 

of item(i) 

A cut off frequency is used in both cases. The evidence of affordance of an action 
by an entity in a formal text is based on their co-occurrence of noun-verb pairs (or co-
occurrence of a pronoun representing the entity).  

2.3   Noun-Verb Co-occurrences 

Phrasal document analysis for Object Oriented requirement modeling commonly uses 
noun phrase – verb phrase linkage analysis [24, 25]. Similar techniques, based on an 
ratio of co-occurrence of a noun phrase with a verb phrase with respect to total 
occurrences of the noun phrase alone, provides a quantitative estimate of the belief 
about a linkage between a given entity and affordance. 
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Since the text is assumed to be consistent and complete it is safe to assume that 
occurrence of a negation statement about an action and an entity such as “Do not walk 
on Motorways”, constitute proof for a ‘non-affordance’. Since there are many nouns 
which do not co-occur with many of the nouns, it is imperative that much of the 
affordances are not known. These are to be dealt differently from non-affordances. 

3   Case Studies on Traffic Codes 

We conducted case studies involving two different traffic codes but in the same 
language 5 . These traffic codes are the highway code of the UK (http://www. 
highwaycode.gov.uk/), and NY state driver’s manual (http://www.nydmv.state.ny.us/ 
dmanual/default.html). Both are available online and are comparable. However, the New 
York Driver’s Manual (NYDM) is more relevant for automobile drivers; the Highway 
Code (HWC) is rather general and applicable to all kinds of users including pedestrians, 
horse riders or automobile drivers as such. 

We applied the Text analysis techniques described in section 2 to extract Entity 
and their affordance related information.  

3.1   The Highway Code 

The Highway Code consists of Natural Language Texts in about 278 sections which 
serve as guidelines for all road users in the UK. It includes texts as well as figures to 
illustrate the proper usage of road network entities in the country. Thus it provides a 
socio-legal view on the affordances of such road network entities. 

Table 2. Most frequent Road network entities from Highway Code 

Term Sense%senseID Sense definition
Motorway motorway%1:06:00:: a broad highway designed for high-speed traffic
Road road%1:06:00:: an open way (generally public) for travel or transportation

Carriageway carriageway%1:06:00(British) one of the two sides of a motorway where traffic travels in 
one direction only usually in two or three lanes

Footpath footpath%1:06:00:: a trodden path

Street street%1:06:00::
a thoroughfare (usually including sidewalks) that is lined with 
buildings; they walked the streets of the small town; he lives on 
Nassau Street 

Pavement pavement%1:06:00::-the paved surface of a thoroughfare
Footbridge footbridge%1:06:00:: a bridge designed for pedestrians

Kerb kerb%1:06:00:: an edge between a sidewalk and a roadway consisting of a line of 
curbstones (usually forming part of a gutter)

Path path%1:04:00::
a course of conduct; the path of virtue; we went our separate ways; 
our paths in life led us apart; genius usually follows a revolutionary 
path 

Lane lane%1:06:00::-(defa a narrow way or road  

                                                           
5 Modern UK English and US English have been reported to be slightly different in two 

particular aspects, spellings and grammatical usage. However in our case study we use the 
WordNet lexicon which includes words from both and grammatical differences can be 
ignored.  
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The most frequent noun terms available from text analysis of the Highway Code 
are presented in table 2.  

3.2   The New York Driver’s Manual 

Similar analysis of the New York Driver’s Manual was carried out. Although this text 
was longer and mostly applicable to Drivers rather than Pedestrians or horse riders, it 
contained explicit instructions within 12 chapters about what drivers on the New York 
Roads should do. 

The most frequent entity list for the NYDM is shown in table 3 below. This list 
shows certain new entities such as Expressway, Crosswalk etc which do not occur in 
the HWC. 

3.3   Actions and Affordances 

The verb forms extracted from both the text were common to both the texts 6 . 
However the relative frequencies were different in the two cases. It is important to 
note that all the different verb forms discussed in section 2.3 were analyzed. Similar 
to the results presented in the extraction of most frequent entities, the different senses 
of the words were grouped separately. Senses are taken from WordNet and 
represented as sense identities (senseID) in table 2 & 3. 

Table 3. Most frequent Road network entities from the New York Driver's manual 
q

Term Sense%senseID Sense definition

Driveway driveway%1:06:00::
a road leading up to a private "house " they parked in the 
driveway

Road road%1:06:00:: an open way (generally public) for travel or transportation

Lane
lane%1:06:00::-
(default)

a narrow way or road     

Way way%1:04:01::
how a result is obtained or an end is "achieved " "a means of 
control " "an example is the best agency of instruction " the 
true way to success

Crosswalk crosswalk%1:06:00::
a path (often marked) where a street or railroad can be 
crossed

Two-way(road)
two-
way%5:00:00:bidirectio
nal:00-(default)

operating or permitting operation in either of two opposite 
"directions " "a two-way valve " "two-way traffic " two-way 
streets

Street street%1:06:00::
a thoroughfare (usually including sidewalks) that is lined with 
buildings; they walked the streets of the small town; he lives 
on Nassau Street 

U-turn u-turn%1:04:00:: complete reversal of direction of travel

Path path%1:04:00::
a course of conduct; the path of virtue; we went our separate 
ways; our paths in life led us apart; genius usually follows a 
revolutionary path 

Route route%1:15:00:: an established line of travel or access

Incline
incline%1:06:00::-
(default)

an inclined surface or roadway that moves traffic from one 
level to another   or axle (as in vehicles or other machines)

Expressway expressway%1:06:00:: a broad highway designed for high-speed traffic

Sidewalk sidewalk%1:06:00::
walk consisting of a paved area for "pedestrians " usually 
beside a street or roadway  

                                                           
6 The high frequency verbs occurring in the HWC relevant to the high frequency nouns of table 

2 were all found to occur in the NYDM.  
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Table 4 below presents the list of such frequently occurring verb terms. The 
corresponding affordance terms are explained alongside. Note that the frequency 
ranks for the two different texts are different. The walkability affordance is different 
from the others because it is not relevant to a human agent who is in a car. However it 
is critical to understand that walking is an important action in relation to actions such 
as parking. 

Table 4. Frequent Action &affordance concepts from HWC and NYDM with freq ranks 

Term NYDM HWC Sense definition Affordance

go 1 1
move away from a place into another "direction " "Go away
before I start to cry " The train departs at noon

Ability to go on that object

cross 2 3
travel across or pass "over " The caravan covered almost
100 miles each day

Abitlity to Cross the object

drive 3 2
operate or control a vehicle; drive a car or bus; Can you drive
this four-wheel truck?

Ability to drive on the object

pass 4 1
go across or "through " "We passed the point where the
police car had parked " A terrible thought went through his
mind

Ability to (go) passed the
object

approach 5 4
move "towards " "We were approaching our destination "
"They are drawing near " The enemy army came nearer and
nearer

Ability to approach the object

come 6 5
reach a "destination " arrive by movement or by making
"progress " "She arrived home at 7 o'clock " "He got into
college " She didn't get to Chicago until after midnight

Ability to come to an object

walk 8 4
use one's feet to "advance " advance by "steps " "Walk, don't
run! " "We walked instead of driving " "She walks with a slight
limp " "The patient cannot walk yet " Walk over to the cabinet

Ability to walk on an object

 

4   Affordances in Ontologies of Road Networks 

Kuhn [2] has discussed why supporting human beings in geographic space requires 
ontologies that are developed paying attention to both, objects and activities. He 
argues that such an approach needs some theory of how activities are structured, 
before connecting them to objects through affordances. 

Inclusion of affordance related information into ontologies of entities with in a 
road network ontology is important because 

 Road network entities are spaces that have meaning. These are conveyed by 
affordances which are often physical as well as legal. 

 Affordances express the meaning of a given entity for a particular domain, in 
terms of the activities associated with it. It is essential domain knowledge. 

 The theory of affordances, along with categorization of different types of 
affordances allows us to structure such knowledge in a pragmatic way. 

We now present some steps to use affordances in the geospatial ontologies for the 
road network entities. 
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4.1   Linking Affordances to Concepts 

As discussed in section 2.3 we know that noun-verb co-occurrences are important 
sources for extraction of comprehension of the affordance of a road network entity. 
Thus a sentence from the NYDM which says: 

 

You may never make a U-turn on a limited access expressway, 
even if paths connect your side of the expressway with the other 
side. 

 

means, limited access expressways do not afford U-turns, although the physical 
affordance still exists. For our paper we shall not distinguish between physical and 
social/legal affordances but recognize that such distinctions can be made.  

The co-occurrence analysis of the two texts gives us values as shown in table 5 
below. These values indicate the affordance each of the entities listed have for the 
corresponding actions. The zero values in the table indicate non-affordances where as 
blanks indicate that no information was available to ascertain affordance or non-
affordance. 

 

Table 5. Affordances of road network entities based on co-occurrence analysis of the two 
traffic code texts 

HWC Street Road Footpath Motorway Lane Way Path Crosswalk Expresswa
move 0.015 0.049 - 0.012 0.107 0.035 - - -
walk - 0.026 0.056 0.000 - - - - -
drive 0.057 0.062 0.000 0.069 0.000 - - - -
enter - 0.025 - - 0.000 0.020 - - -
stop 0.010 0.075 - 0.000 0.000 0.051 - - -
be 0.014 0.215 0.006 0.028 0.061 0.033 0.014 - -
cross 0.029 0.135 - 0.000 0.024 0.067 0.020 - -
turn 0.038 0.059 - - 0.042 0.041 - - -
wait - 0.040 - 0.000 0.009 0.031 - - -
approach 0.022 0.052 - 0.016 0.065 0.045 0.023 - -
go - 0.021 - - 0.063 - - - -
pass - 0.038 - - 0.032 0.012 0.017 - -
NYDM
move 0.026 0.032 - - 0.107 - 0.032 - -
walk - 0.010 - - - - - - -
drive 0.020 0.061 - - 0.056 - - - 0.047
enter 0.025 0.048 - - 0.077 0.041 - 0.053 0.064
stop 0.019 0.048 - - 0.038 0.026 - 0.059 0.026
be 0.011 0.068 - - 0.089 0.026 0.004 0.009 0.024
cross 0.061 0.033 - - 0.017 0.071 - 0.030
turn 0.037 0.080 - - 0.094 0.051 0.029 0.018 0.008
wait 0.040 - - - 0.009 0.059 - - 0.029
approach 0.015 0.060 - - 0.034 - - - 0.026
go 0.020 0.029 - - 0.030 0.051 - - 0.017
pass 0.044 0.039 - - 0.130 0.025 - 0.014 0.013

 
 



 Use of Affordances in Geospatial Ontologies 133 

Kuhn [2] reports similar results about the German traffic code, although his results 
are rather deterministic (do not use a quantitative value to represent the affordance) 
and do not report non-affordances. We extend the work of Kuhn [2] by adding such 
information and propose to include such knowledge in the geospatial ontologies. 

The level of automation in terms of machine based analysis of the affordance is 
greater in our case but is also accompanied with careful manual inspection. We 
confirm the observations of Kuhn [2] that manual extraction is tedious but at times 
most effective. 

4.2   Nested and Sequential Affordances 

Kuhn [2] has also reported hierarchies of actions in the German traffic code and this 
includes the notion of entailment of actions. Four notions of entailments commonly 
seen in verbs have been reported in linguistics [26]. These include: 

 Troponymy, which express super-sub concept relationships among 
verbs and hence the actions. 

 Inclusion, which expresses part-of relationships between two actions, 
implying that one action is a part of the other. 

 Pre-requisiteness, where one action acts as a pre-requisite for the 
second but not necessarily causing the second action. 

 Causality, when one action initiates (or is the cause) of the second 
action 

These relations are very useful to probe nested and sequential affordances in 
correspondence with sequence of actions. For example the complex action to overtake 
is composed of the actions drive, approach and pass. The affordance of another 
vehicle to be passed on a road is only realized when the affordance of approachability 
has been utilized. Much more complex actions can be explored with the notion of 
such sequential affordances. 

At the same time, by using is-a relations we can express hierarchies of action 
concepts. Figure 2 below shows such a hierarchy based on the action concepts 
extracted from both traffic code texts. The affordance of the lower concepts such as 
walk, drive etc. entails the affordance of movement and is nested inside the former. 

4.3   Probabilistic Values and Levels of Affordances 

There are several challenges to integrate information about actions and affordances in 
geospatial ontologies. Firstly, in the context of the hierarchies of actions as seen in 
figure 2 we know that affordances related to the actions can be arranged in a similar 
hierarchy. The levels of affordances briefly discussed in section 1.2. The core issue 
being that distinctions have to be made about the level of a given affordance [16]. As 
an extension of this notion, in Figure 3 we illustrate that affordances at each level is 
activated by a corresponding action of the same level. This representation also shows 
the close relation between actions and affordances. Nevertheless it should be noted 
that affordances are mere possibilities and hence require independent treatment in 
relation to actions themselves. 
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Fig. 2. Hierarchy of action concepts based on is-a relations 

 

Fig. 3. Schematic representation of levels of functional knowledge about artifacts 
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Secondly, we are required to deal with probabilities such as the linkages between 
actions and entities. It is important to note that unlike actions affordances can be 
measured as shown by Raubal [27]. Such measurements are based on human subject 
testing but in our case this is done by text analysis. In both cases the separation of 
different levels as seen in figure 3 is important. As seen in table 5, such information is 
probabilistic rather than deterministic. It is rather difficult to obtain a Boolean value 
about the existence of an affordance. The link between an entity concept and 
affordances is a recorded as a value between 0 and 1. It is also true that such 
information is amenable to revision based on updated knowledge or revision of the 
formal text. It is therefore imperative to handle the links between entities and 
functions in a probabilistic framework such as a belief network .  

Some probabilistic frameworks available in ontologies include that of Ding et al. 
[28] and that of Holi and Hyvönen [29]. Both the approaches are strikingly similar in 
their approaches of using Bayesian network to represent and ontology, BayesOWL 
[28] provides not only a framework to build the probabilistic ontologies but also build 
a reasoning framework around them. These approaches are distinctively different 
from other probabilistic extensions proposed such as P-CLASSIC [30], Fuzzy DL 
[31] besides others [32]. The Bayesian network based ontologies do not propose a 
new logic formalism for ontology representation but allows translation of existing DL 
based ontologies along with probabilistic knowledge [28]. 

5   Discussion 

The main challenges of including knowledge of affordances in geospatial ontologies 
are 

1 Affordances are difficult to quantify. At best it is possible to provide a 
relative value. This suggests that probability based values (which are 
amenable to revisions) are best suited for affordance specifications. 

2 Since they are defined to be perceptions of individuals, a value for group 
of individuals cannot be verified without extensive human subject 
testing. 

3 Formal texts are natural language texts and hence are still open to some 
level of interpretation. The values obtained by one individual may not be 
the same as that by another in spite of the level of automation achieved.  

4 Hierarchies of actions are independent of the hierarchies of concepts 
which afford them. This means that inheritance of affordances is a 
complex affair and multiple inheritances which might capture some of 
such complex notions, are not advised by ontology engineering 
principles [33]. 

5 Lastly, we have already discussed that probabilistic extensions to 
ontology specification have only begun and the challenge to adapt such 
extensions for geospatial ontologies still exist.  

Nevertheless this case study has also raised a few possibilities in terms of 
specification of road entities based on the actions that they can afford. Although there 
have been many different approaches in geospatial ontology specifications [1], it is 
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important that this direction of work, which places primary significance to human 
actions in geographic space, is given its due importance. 

The affordances expressed in table 5 are a vital to any translation or mapping of 
terms from the HWC to the NYDM and vice versa. Several terms such as motorway 
and footpath form the HWC which do not occur in the NYDM can be best expressed 
based on the similarity of their affordance to those of the NYDM. This is also 
applicable to terms such as Expressway and Crosswalk which do not appear on our 
list for the HWC. 

5.1   Affordance Based Ontologies for Robot Control 

Ontologies extracted from texts as described can have many uses such as task 
planning for robot vehicles for autonomous driving. The significance of using such 
affordance hierarchies as opposed to conventional taxonomies of entities can be 
explained as follows. 

(1) affordance based ontologies are best suited for reasoning tasks which relate to 
activities and actions. Unlike conventional taxonomy based hierarchies they do not 
rely on structural properties of entities but their functional properties and hence are 
more useful. 

(2) Since the affordance based ontologies are defined on the basis of a particular 
agent and its goal (context), it provides better opportunities for a cognitive agent to 
plan its tasks in a given environment. The translation of the same entities into another 
context requires a new set of affordance values as seen in table 5 (In this case the goal 
changes from "driving in UK" to "driving in NY").  

(3) Since our system uses text analysis, collective knowledge of an expert group, in 
the form of documentation, is extractable. These ontologies can be acquired a priori 
by agents before beginning task planning [34]. Such a mechanism mimics the human 
practice of reading traffic code instructions before driving in a new country. 

At the same time it is important to note that there is a need to integrate both views 
of the world in terms of functional properties as well as structure based conventional 
ontologies. Some approaches for integration of the two views can be seen in the work 
of Kozaki et al [35] and Sen [36].    

6   Conclusions and Future Work 

In this paper we have shown a mechanism to extract knowledge of affordances from 
formal texts and illustrated this with the help of two traffic code texts. Our case study 
highlights the utility of text analysis techniques and tools for such extraction. We 
have seen that the knowledge available from such analysis is complex and 
probabilistic in nature. Several challenges in order to incorporate such information in 
geospatial ontologies were presented. 

This paper has extended some of the work presented by Kuhn [2] although much 
work remains. The following is a short list of the future work identified in this area 
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 Since our tool involved use of available tools for text analysis, the results were 
limited to a certain extent by the limitations of the tools themselves. For 
example the GAMBL POS tagger shows an efficiency of about 80%. The 
WordNet lexicon has its own limitations. Improvement in the automation 
process would help to reduce the manual interventions required. 

 The automated analysis of verb-noun linkages currently ignores pronouns and 
these have to be analyzed manually. It is important to evaluate the machine 
processing of pronouns in such analysis by using anaphora resolution tools [37]. 

 A natural step forward from this case study would be to adopt a probabilistic 
framework for linking the two hierarchies (which in-turn represents the two 
different views of the geospatial domain). This includes evaluation of the 
available approaches discussed in 4.3. BayesOWL [27] is an ideal candidate for 
such experiments. 
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Abstract. This paper introduces a behavior-grounded approach to rep-
resenting and learning the affordances of tools by a robot. The affordance
representation is learned during a behavioral babbling stage in which the
robot randomly chooses different exploratory behaviors, applies them to
the tool, and observes their effects on environmental objects. As a re-
sult of this exploratory procedure, the tool representation is grounded in
the behavioral and perceptual repertoire of the robot. Furthermore, the
representation is autonomously testable and verifiable by the robot as
it is expressed in concrete terms (i.e., behaviors) that are directly avail-
able to the robot’s controller. The tool representation described here can
also be used to solve tool-using tasks by dynamically sequencing the ex-
ploratory behaviors which were used to explore the tool based on their
expected outcomes. The quality of the learned representation was tested
on extension-of-reach tasks with rigid tools.

1 Introduction

The ability to use tools is one of the hallmarks of intelligence. Tool use is fun-
damental to human life and has been for at least the last two million years.
We use tools to extend our reach, to amplify our physical strength, to transfer
objects and liquids, and to achieve many other everyday tasks. A large number
of animals have also been observed to use tools [1]. Some birds, for example, use
twigs or cactus pines to probe for larvae in crevices which they cannot reach with
their beaks. Sea otters use stones to open hard-shelled mussels. Chimpanzees use
stones to crack nuts open and sticks to reach food, dig holes, or attack predators.
Orangutans fish for termites with twigs and grass blades. Horses and elephants
use sticks to scratch their bodies. These examples suggest that the ability to
use tools is an adaptation mechanism used by many organisms to overcome the
limitations imposed on them by their anatomy.

Despite the widespread use of tools in the animal world, however, studies
of autonomous robotic tool use are still rare. There are industrial robots that
use tools for tasks such as welding, cutting, and painting, but these operations
are carefully scripted by a human programmer. Robot hardware capabilities,
however, continue to increase at a remarkable rate. Humanoid robots such as
Honda’s Asimo, Sony’s Qrio, and NASA’s Robonaut feature motor capabilities

E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 140–158, 2008.
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similar to those of humans. In the near future similar robots will be working
side by side with humans in homes, offices, hospitals, and in outer space. It is
difficult to imagine how these robots that will look like us, act like us, and live in
the same physical environment like us, will be very useful if they are not capable
of something so innate to human culture as the ability to use tools. Because of
their humanoid “anatomy” these robots undoubtedly will have to use external
objects in a variety of tasks, for instance, to improve their reach or to increase
their physical strength. These important problems, however, have not been well
addressed by the robotics community.

Another motivation for studying robot tool behaviors is the hope that robotics
can play a major role in answering some of the fundamental questions about
tool-using abilities of animals and humans. After ninety years of tool-using ex-
periments with animals (see next section) there is still no comprehensive theory
attempting to explain the origins, development, and learning of tool behaviors
in living organisms.

Progress along these two lines of research, however, is unlikely without initial
experimental work which can be used as the foundation for a computational
theory of tool use. Therefore, the purpose of this paper is to empirically eval-
uate one specific way of representing and learning the functional properties or
affordances [2] of tools.

The tool representation described here uses a behavior-based approach [3] to
ground the tool affordances in the existing behavioral repertoire of the robot.
The representation is learned during a behavioral babbling stage in which the
robot randomly chooses different exploratory behaviors, applies them to the tool,
and observes their effects on environmental objects. The quality of the learned
representation is tested on extension-of-reach tool tasks. The experiments were
conducted using a mobile robot manipulator. As far as we know, this is one of
the first studies of this kind in the Robotics and AI literature.

2 Related Work

2.1 Affordances and Exploratory Behaviors

A simple object like a stick can be used in numerous tasks that are quite different
from one another. For example, a stick can be used to strike, poke, prop, scratch,
pry, dig, etc. It is still a mystery how animals and humans learn these affordances
[2] and what are the cognitive structures used to represent them.

James Gibson defined affordances as “perceptual invariants” that are directly
perceived by an organism and enable it to perform tasks [2]. Gibson is not spe-
cific about the way in which affordances are learned but he suggests that some
affordances are learned in infancy when the child experiments with objects. For
example, an object affords throwing if it can be grasped and moved away from
one’s body with a swift action of the hand and then letting it go. The per-
ceptual invariant in this case is the shrinking of the visual angle of the object
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as it is flying through the air. This highly interesting “zoom” effect will draw
the attention of the child [2, p. 235].

Gibson defines tools as detached objects that are graspable, portable, manipu-
lable, and usually rigid [2, p. 40]. A hammer, for example, is an elongated object
that is graspable at one end, weighted at the other end, and affords hitting or
hammering. A knife, on the other hand, is a graspable object with a sharp blade
that affords cutting. A writing tool like a pencil leaves traces when applied to
surfaces and thus affords trace-making [2, p. 134].

The related work on animal object exploration indicates that animals use stereo-
typed exploratory behaviors when faced with a new object [4,5]. This set of behav-
iors is species specific and may be genetically predetermined. For some species of
animals these tests include almost their entire behavioral repertoire: “A young cor-
vide bird, confronted with an object it has never seen, runs through practically all
of its behavioral patterns, except social and sexual ones.” [5, p. 44].

Recent studies with human subjects also suggest that the internal representa-
tion for a new tool used by the brain might be encoded in terms of specific past
experiences [6]. Furthermore, these past experiences consist of brief feedforward
movement segments used in the initial exploration of the tool [6]. A tool task is
later solved by dynamically combining these sequences [6].

Thus, the properties of a tool that an animal is likely to learn are directly related
to the behavioral and perceptual repertoire of the animal. Furthermore, the learn-
ing of these properties should be relatively easy since the only requirement is to
perform a (small) set of exploratory behaviors and observe their effects. Based on
the results of these “experiments” the animal builds an internal representation for
the tool and the actions that it affords. Solving tool tasks in the future is based on
dynamically combining the exploratory behaviors based on their expected results.

Section 3 formulates a behavior-grounded computational model of tool affor-
dances based on these principles.

2.2 Experiments with Primates

According to Beck [1], whose taxonomy is widely adopted today, most animals
use tools for four different functions: 1) to extend their reach; 2) to amplify
the mechanical force that they can exert on the environment; 3) to enhance
the effectiveness of antagonistic display behaviors; and 4) to control the flow of
liquids. This paper focuses only on the extension of reach mode of tool use.

Extension of reach experiments have been used for the last 90 years to test
the intelligence and tool-using abilities of primates [7,8,9]. In these experiments
the animal is prevented from getting close to an incentive and thus it must use
one of the available tools to bring the incentive within its sphere of reach.

Wolfgang Köhler was the first to systematically study the tool behaviors of
chimpanzees. He performed a large number of experiments from 1913 to 1917.
The experimental designs were quite elaborate and required use of a variety
of tools: straight sticks, L-sticks, T-sticks, ladders, boxes, rocks, ribbons, ropes,
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and coils of wire. The incentive for the animal was a banana or a piece of apple
which could not be reached without using one or more of the available tools.
The experimental methodology was to let the animals freely experiment with
the available tools for a limited time period. If the problem was not solved
during that time, the experiment was terminated and repeated at some later
time.

In more recent experimental work, Povinelli et al. [8] replicated many of the
experiments performed by Köhler and used statistical techniques to analyze the
results. The main conclusion was that chimpanzees solve these tasks using simple
rules extracted from experience like “contact between objects is necessary and
sufficient to establish covariation in movement” [8, p. 305]. Furthermore, it was
concluded that chimpanzees do not reason about their own actions and tool
tasks in terms of abstract unobservable phenomena such as force and gravity.
Even the notion of contact that they have is that of “visual contact” and not
“physical contact” or “support” [8, p. 260]. Similar results have been reported
by Visalberghi and Trinca [9].

The conclusions of these studies were used to guide the design of the robot’s
perceptual routines (see Section 4).

2.3 Related Work in Robotics and AI

Krotkov [10] notes that relatively little robotics research has been geared towards
discovering external objects’ properties other than shape and position. Some of
the exploration methods employed by the robot in Krotkov’s work use tools
coupled with sensory routines to discover object properties. For example, the
“whack and watch” method uses a wooden pendulum to strike an object in
order to estimate its mass and coefficient of sliding friction. The “hit and listen”
method uses a blind person’s cane to determine the acoustic properties of objects.
Fitzpatrick et al. [11] used a similar approach to program a robot to poke objects
with its arm (without using a tool) and learn the rolling properties of the objects
from the resulting displacements.

Bogoni and Bajcsy describe a system that evaluates the applicability of differ-
ently shaped pointed objects for cutting and piercing operations [12,13]. A robot
manipulator is used to move the tool into contact with various materials (e.g.,
wood, sponge, plasticine) while a computer vision system tracks the outline of
the tool and measures its penetration into the material. The outlines of the tools
are modeled by superquadratics and clustering algorithms are used to identify
interesting properties of successful tools. This work is one of the few examples
in the robotics literature that has attempted to study object functionality with
the intention of using the object as a tool by a robot.

Several computer vision projects have focused on the task of recognizing ob-
jects based on their functionality [14,15]. Hand tools are probably the most
popular object category used to test these systems. One problem with these
systems, however, is that they try to reason about the functionalities of objects
without actively interacting with the objects.
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3 Behavior-Grounded Tool Representation

3.1 Robots, Tools, and Tasks

Several definitions for tool use have been given in the literature. Arguably, the
most comprehensive definition is the one given by Beck [1, p. 10]:

“Tool use is the external employment of an unattached environmental
object to alter more efficiently the form, position, or condition of another
object, another organism, or the user itself when the user holds or carries
the tool during or just prior to use and is responsible for the proper and
effective orientation of the tool.”

The notion of robotic tool use brings to mind four things: 1) a robot; 2) an
environmental object which is labeled a tool; 3) another environmental object
to which the tool is applied (labeled an attractor); and 4) a tool task. For tool
use to occur all four components need to be present. In fact, it is meaningless
to talk about one without taking into account the other three. What might be
a tool for one robot may not be a tool for another because of differences in the
robots’ capabilities. Alternatively, a tool might be suitable for one task (and/or
object) but completely useless for another. And finally, some tasks may not be
within the range of capabilities of a robot even if the robot is otherwise capable
of using tools. Thus, the four components of tool use must always be taken into
consideration together.

This is compatible with Gibson’s claim that objects afford different things
to people with different body sizes. For example, an object might be graspable
for an adult but may not be graspable for a child. Therefore, Gibson suggests
that a child learns “his scale of sizes as commensurate with his body, not with
a measuring stick” [2, p. 235]. For example, an object is graspable if it has
opposable surfaces the distance between which is less than the span of the hand
[2, p. 133].

Because of these arguments, any tool representation should take into account
the robot that is using the tool. In other words, the representation should be
grounded in the behavioral and perceptual repertoire of the robot. The main
advantage of this approach is that the tool’s affordances are expressed in concrete
terms (i.e., behaviors) that are available to the robot’s controller. Note that this
is in sharp contrast with other theories of intelligent systems reasoning about
objects in the physical world [16,14]. They make the assumption that object
properties can be expressed in abstract form (by a human) without taking into
account the robot that will be using them.

Another advantage of the behavior-grounded approach is that it can handle
changes in the tool’s properties over time. For example, if a familiar tool becomes
deformed (or a piece of it breaks off) it is no longer the same tool. However, the
robot can directly test the accuracy of its representation by executing the same
set of exploratory behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used to update the tool’s
representation. Thus, the accuracy of the representation can be directly tested
by the robot.
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3.2 Theoretical Formulation

The previous sections presented a justification for the behavior-grounded repre-
sentation. This section formulates these ideas using the following notation.

Let βe1 , βe2 , . . . , βek
be the set of exploratory behaviors available to the robot.

Each behavior, has one or more parameters that modify its outcome. Let the
parameters for behavior βei be given as a parameter vector Ei = [ei

1, e
i
2, . . . e

i
p(i)],

where p(i) is the number of parameters for this behavior. The behaviors, and
their parameters, could be learned by imitation, programmed manually, or
learned autonomously by the robot. In this paper, however, the issue of how
these behaviors are selected and/or learned will be ignored.

In a similar fashion, let βb1 , βb2 , . . . , βbm be the set of binding behaviors avail-
able to the robot. These behaviors allow the robot to attach tools to its body.
The most common binding behavior is grasping. However, there are many ex-
amples in which a tool can be controlled even if it is not grasped. Therefore, the
term binding will be used. The parameters for binding behavior βbi are given as
a parameter vector Bi = [bi

1, b
i
2, . . . b

i
q(i)].

Furthermore, let the robot’s perceptual routines provide a stream of obser-
vations in the form of an observation vector O = [o1, o2, . . . , on]. It is assumed
that the set of observations is rich enough to capture the essential features of
the tasks to which the tool will be applied.

A change detection function, T (O(t′), O(t′′)) → {0, 1}, that takes two ob-
servation vectors as parameters is also defined. This function determines if an
“interesting” observation was detected in the time interval [t′, t′′]. In the current
set of experiments T = 1 if the attractor object was moving during the execution
of the last exploratory behavior. The function T is defined as binary because
movement is either detected or it is not.

With this notation in mind, the functionality of a tool can be represented
with an Affordance Table of the form:

Binding Binding Exploratory Exploratory Os Oe
Times Times

Behavior Params Behavior Params Used Succ

In each row of the table, the first two entries represent the binding behavior
that was used. The second two entries represent the exploratory behavior and its
parameters. The next two entries store the observation vector at the start and
at the end of the exploratory behavior. The last two entries are integer counters
used to estimate the probability of success of this sequence of behaviors.

Binding Binding Exploratory Exploratory Os Oe
Times Times

Behavior Params Behavior Params Used Succ

βb1 b̃1
1 βe3 ẽ3

1, ẽ
3
2 Õ(t′) Õ(t′′) 4 3

The meanings of these entries are best explained with an example. Consider
the following sample row in which the binding behavior βb1 which has one pa-
rameter was performed to grasp the tool. The specific value of the parameter for
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this behavior was b̃1
1 (a˜ sign is used to represent a specific fixed value). Next,

the exploratory behavior βe3 was performed with specific values ẽ3
1 and ẽ3

2 for
its two parameters. The value of the observation vector prior to the start of
βe3 was Õ(t′) and it value after βe3 has completed was Õ(t′′). This sequence of
behaviors was performed 4 times. It resulted in observations similar to the first
time this row of the affordance table was created in 3 of these instances, i.e., its
probability of success is 75%. Section 6 and Figure 5 provide more information
about the organization of the affordance table.

Initially the affordance table is blank. When the robot is presented with a
tool it performs a behavioral babbling routine which picks binding and exploratory
behaviors at random, applies them to the tools and objects, observes their effects,
and updates the table. New rows are added to the table only if T was on while
the exploratory behavior was performed. During learning, the integer counters
of all rows are set to 1. They are updated during testing trials.

4 Experimental Setup

All experiments were performed using the CRS+ A251 mobile manipulator
shown in Figure 1. Five tools were used in the experiments: stick, L-stick, L-
hook, T-stick, and T-hook (see Figure 1). The tools were built from pine wood
and painted with spray paint. The choice of tools was motivated by the similar
tools that Köhler’s used in his experiments with chimpanzees [7]. An orange
hockey puck was used as an attractor object. The experimental setup is shown
in Figure 2 and is described in more detail below.

A Sony EVI-D30 camera was mounted on a tripod overlooking the robot’s
working area (see Figure 2). The robot’s wrist, the tools, and the attractor were
color coded so that their positions can be uniquely identified and tracked using

Fig. 1. The figure shows the CRS+ A251 mobile manipulator, the five tools, and the
hockey puck that were used in the experiments
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Fig. 2. Experimental setup

Fig. 3. The image shows the field of view of the robot through the Sony EVI-D30
camera. The robot’s wrist, the attractor object, the tools, and the goal region were
color coded and their positions were tracked using color segmentation (see Figure 4).
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Fig. 4. Color segmentation results for the image frame shown in Figure 3. The positions
of the color coded objects were calculated after calibrating the camera using Roger
Tsai’s method [17,18]. Although the shape of the tool can be extracted form this image
it is not required and used by the behavior-grounded approach.

computer vision (see Figures 3 and 4). The computer vision code was run at
15Hz in 640x480 resolution mode.

To ensure consistent tracking results between multiple robot experiments the
camera was calibrated every time it was powered up. A 6 × 6 calibration pattern
was used. The pattern consists of small color markers placed on a cardboard, 5
inches apart, so that they form a square pattern. The pixel coordinates of the
36 uniformly colored markers were identified automatically using color segmen-
tation. The centroid positions of the 36 color markers were used to calculate a
mapping function which assigns to each (x,y) in camera coordinates a (X,Y,Z)
location in world coordinates. This calculation is possible because the markers
are coplanar and the equation of the plane in which they lie is known (e.g., Z=0
is the plane of the table). The mapping function was calculated using Roger
Tsai’s method [17,18] and the code given in [19].

5 Exploratory Behaviors

All behaviors used here were encoded manually from a library of motor schemas
and perceptual schemas [3] developed for this specific robot. The behaviors result
in different arm movement patterns as described below.

The first four behaviors move the arm in the indicated direction while keep-
ing the wrist perpendicular to the table on which the tool slides. These be-
haviors have a single parameter which determines how far the arm will travel
relative to its current position. Two different values for this parameter were used
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Exploratory Behaviors Parameters
Extend arm offset distance
Contract arm offset distance
Slide arm left offset distance
Slide arm right offset distance
Position wrist x,y

(2 and 5 inches). The position wrist behavior moves the manipulator such that
the centroid of the attractor is at offset (x, y) relative to the wrist.

5.1 Grasping Behavior

There are multiple ways in which a tool can be grasped. These represent a
set of affordances which we will call first order (or binding affordances), i.e.,
the different ways in which the robot can attach the tool to its body. These
affordances are different from the second order (or output affordances) of the
tool, i.e., the different ways in which the tool can act on other objects. This paper
focuses only on output affordances, so the binding affordances were specified with
only one grasping behavior. The behavior takes as a parameter the location of
a single grasp point located at the lower part of the tool’s handle.

5.2 Observation Vector

The observation vector has 12 real-value components. In groups of three, they
represent the position of the attractor object in camera-centric coordinates, the
position of the object relative to the wrist of the robot, the color of the object,
and the color of the tool.

Observation Meaning
o1, o2, o3 X,Y,Z positions of the object (camera-centric)
o4, o5, o6 X,Y,Z positions of the object (wrist-centric)
o7, o8, o9 R,G,B color components of the object
o10, o11, o12 R,G,B color components of the tool

The change detection function T was defined with the first three components,
o1, o2, o3. To determine if the attractor is moving, T calculates the Euclidean
distance and thresholds it with an empirically determined value (0.5 inches).
The times-successful counter is incremented if the observed attractor movement
is within 40 degrees of the expected movement stored in the affordance table.

6 Learning Trials

During the learning trials the robot was allowed to freely explore the properties of
the tools. The exploration consisted of trying different behaviors, observing their
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results, and filling up the affordance table. The initial positions of the attractor
and the tool were random. If the attractor was pushed out of tool reach by the
robot then the learning trial was temporarily suspended while the attractor was
manually placed in a new random position. The learning trials were limited to
one hour of run time for every tool.

6.1 What is Learned

Figure 5 illustrates what the robot can learn about the properties of the T-hook
tool based on a single exploratory behavior. In this example, the exploratory
behavior is “Contract Arm” and its parameter is “5 inches.” The two observation
vectors are stylized for the purposes of this example. The information that the
robot retains is not the images of the tool and the puck but only the coordinates
of their positions as explained above. If a different exploratory behavior was
selected by the robot it is possible that no movement of the puck will be detected.
In this case the robot will not store any information (row) in the affordance table.

Fig. 5. Contents of a sample row of the affordance table for the T-hook tool

When the robot performs multiple exploratory behaviors a more compact
way to represent this information is required. A good way to visualize what the
robot learns is with graphs like the ones shown in Figure 6. The figures show
the observed outcomes of the exploratory behaviors when the T-hook tool was
applied randomly to the hockey puck. Each of the eight graphs shows the ob-
served movements of the attractor object when a specific exploratory behavior
was performed. The movements of the attractor object are shown as arrows. The
start of each arrow corresponds to the initial position of the attractor relative
to the wrist of the robot (and thus relative to the grasp point) just prior to the
start of the exploratory behavior. The arrow represents the observed distance
and direction of movement of the attractor in camera coordinates at the end of
the exploratory behavior. In other words, each of the arrows shown in Figure 6
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Extend Arm
(2 inches)

Extend Arm
(5 inches)

Slide Left
(2 inches)

Slide Left
(5 inches)

Slide Right
(2 inches)

Slide Right
(5 inches)

Contract Arm
(2 inches)

Contract Arm
(5 inches)

Fig. 6. Visualizing the affordance table for the T-hook tool. Each of the eight graphs
show the observed movements of the attractor object after a specific exploratory behav-
ior was performed multiple times. The start of each arrow corresponds to the position
of the attractor in wrist-centered coordinates (i.e., relative to the tool’s grasp point)
just prior to the start of the exploratory behavior. The arrow represents the total dis-
tance and direction of movement of the attractor in camera coordinates at the end of
the exploratory behavior.

represents one observed movement of the puck similar to the “detected move-
ment” arrow show in Figure 5. The arrows in Figure 6 are superimposed on the
initial configuration of the tool and not on its final configuration as in Figure 5.

This affordance representation can also be interpreted as a predictive model
of the results of the exploratory behaviors. In other words, the affordances are
represented as the expected outcomes of specific behaviors. This interpretation
of affordances is consistent with the idea that biological brains are organized as
predictive machines that anticipate the consequences of actions – their own and
those of others [20, p. 1]. It is also consistent with some recent findings about the
internal representation of the functional properties of novel objects and tools in
humans. For example, “if the brain can predict the effect of pushing or pulling an
object this is effectively an internal model of the object that can be used during
manipulation”[6]. A recent result in the theoretical AI literature also shows that
the state of a dynamic system can be represented by the outcomes of a set of
tests [21,22]. The tests consist of action-observation sequences. It was shown that
the state of the system is fully specified if the outcomes of a basis set of test
called core tests are known in advance [22].

6.2 Querying the Affordance Table

After the affordance table is populated with values it can be queried to dynam-
ically create behavioral sequences that solve a specific tool task. The behaviors
in these sequences are the same behaviors that were used to fill the table. This
subsection describes the search heuristic used to select the best affordance for
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Start

Identify the current tool, 
attractor object, and goal position 

Yes

Yes

Yes

Goal reached? 

No

Select the best affordance, a, 
using a greedy heuristic search 

Time limit reached? 

No

No

Need to reposition 
the tool? 

Perform the exploratory behavior
associated with the affordance a 

Attractor object 
movement?

a.times_used++;

End

Reposition the tool

Movement was 
predicted OK? 

a.times_successful++;

YesYes

NoNo

Fig. 7. Flowchart diagram for the procedure used by the robot to solve tool-using tasks
with the help of the behavior-grounded affordance representation
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the current task configuration. This heuristic is used by the procedure for solving
tool-using tasks shown in Figure 7.

During testing trials, the best affordance for a specific step in a tool task was
selected using a greedy heuristic search. The query method that was adopted
uses empirically derived heuristics to perform multiple nested linear searches
through the affordance table. Each successive search is performed only on the
rows that were not eliminated by the previous searches. Four nested searches
were performed in the order shown below:

1) Select all rows that have observation vectors consistent with the colors of
the current tool and object.

2) From the remaining rows select those with probability of success greater
than 50%. In other words, select only those rows that have a replication proba-
bility (times successful/times used) greater than 1

2 (the reasons for choosing this
threshold value are described below).

3) Sort the remaining rows (in increasing order) based on the expected dis-
tance between the attractor object and the goal region if the behavior associated
with this row were to be performed.

4) From the top 20% of the sorted rows choose one row which minimizes the
re-positioning of the tool relative to its current location.

As it was mentioned above the greedy one-step-lookahead heuristic was de-
rived empirically. The performance of the heuristic was fine tuned for speed of
adaptation in the presence of uncertainty which is important when multiple robot
trials have to be performed. For example, the threshold value of 50% used in step
2 above was chosen in order to speed up the elimination of outdated affordances
when the geometry of the tool suddenly changes (see the experiment described
in Section 7.2). With this threshold value it takes only one unsuccessful behav-
ioral execution in order to eliminate an affordance from further consideration.
Future work should attempt to formulate a more principled approach to this
affordance-space planning problem, preferably using performance data derived
from tool-using experiments with animals and humans (e.g., [6]).

7 Testing Trials

Two types of experiments were performed to test the behavior-grounded ap-
proach. They measured the quality of the learned representation and its adap-
tation abilities when the tool is deformed, respectively.

7.1 Extension of Reach

In the first experiment the robot was required to pull the attractor over a color
coded goal region. Four different goal positions were defined. The first goal po-
sition is shown in Figure 1 (the dark square in front of the robot). The second
goal position was located farther away from the robot (see Figure 2). To achieve
it the robot had to push the attractor away from its body. Goals 3 and 4 were
placed along the mid-line of the table as shown in Figure 8.
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Fig. 8. The figure shows the positions of the four goal regions (G1, G2, G3, and G4)
and the four initial attractor positions used in the extension of reach experiments. The
two dashed lines indicate the boundaries of the robot’s sphere of reach when it is not
holding any tool.

In addition to that there were 4 initial attractor positions per goal. The initial
positions are located along the mid-line of the table, 6 inches apart as shown in
Figure 8. The tool was always placed in the center of the table. A total of 80
trials were performed (4 goals × 4 attractor positions × 5 tools). The table below
summarizes the results. The values represent the number of successful solutions
per goal, per tool. Four is the maximum possible value as there are only four
initial starting positions for the attractor object.

Tool Goal 1 Goal 2 Goal 3 Goal 4
Stick 0 2 4 4
L-stick 4 2 4 4
L-hook 4 3 4 4
T-stick 3 3 4 4
T-hook 4 4 4 4

As can be seen from the table, the robot was able to solve this task in the
majority of the test cases. The most common failure condition was due to pushing
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Fig. 9. A T-hook missing its right hook is equivalent to an L-hook

the attractor out of tool’s reach. This failure was caused by the greedy one-step-
lookahead heuristic used for selecting the next tool movement. If the robot plans
the possible movements of the puck for 2 or 3 moves ahead these failures will
be eliminated. A notable exception is the Stick tool, which could not be used
to pull the object back to the near goal (G1). The robot lacks the required
exploratory behavior (turn-the-wrist-at-an-angle-and-then-pull) that is required
to detect this affordance of the stick. Adding the capability of learning new
exploratory behaviors can resolve this problem.

7.2 Adaptation After a Tool Breaks

The second experiment was designed to test the flexibility of the behavior-
grounded representation in the presence of uncertainties. The uncertainly in
this case was a tool that can break. For example, Figure 9 shows the tool trans-
formation which occurs when a T-hook tool loses one of its hooks. The result is
a L-hook tool. This section describes the results of an experiment in which the
robot was exposed to such tool transformation after it had already learned the
affordances of the T-hook tool.

To simulate a broken tool, the robot was presented with a tool that has
the same color ID as another tool with a different shape. More specifically, the
learning was performed with a T-hook which was then replaced with an L-hook.
Because color is the only feature used to recognize tools the robot believes that
it is still using the old tool.

The two tools differ in their upper right sections as shown in Figure 9. When-
ever the robot tried to use affordances associated with the missing parts of the
tool they did not produce the expected attractor movements. Figure 10 shows
frames from a sequence in which the robot tried in vain to use the upper right
part of the tool to move the attractor towards the goal. After several trials the
replication probability of the affordances associated with that part of the tool
was reduced and they were excluded from further consideration. Figure 11 shows
frames from the rest of this sequence in which the robot was able to complete
the task with the intact left hook of the tool.
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Fig. 10. Using a broken tool (Part I: Adaptation) - Initially the robot tries to
move the attractor towards the goal using the missing right hook. Because the puck fails
to move as expected the robot reduces the replication probability of the affordances
associated with this part of the tool.

Fig. 11. Using a broken tool (Part II: Solving the task) - After adapting to the
modified affordances of the tool, the robot completes the task with the intact left hook

A total of 16 trials similar to the one shown in Figure 10 were performed (i.e.,
4 goal regions × 4 initial attractor positions). In each of these experiments the
robot started the testing trial with the original representation for the T-hook
tool and modified it based on actual experience. The robot was successful in all
16 experiments, i.e., the robot was able to place the attractor over the target
goal region with the “broken” tool in all 16 experiments.
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8 Conclusions and Future Work

This paper introduced a novel approach to representing and learning tool affor-
dances by a robot. The affordance representation is grounded in the behavioral and
perceptual repertoire of the robot. More specifically, the affordances of different
tools are represented in terms of a set of exploratory behaviors and their resulting
effects. Itwas shownhowthis representation canbeused to solve tool-using tasksby
dynamically sequencing exploratory behaviors based on their expected outcomes.

The behavior-grounded approach represents the tool’s affordances in concrete
terms (i.e., behaviors) that are available to the robot’s controller. Therefore, the
robot can directly test the accuracy of its tool representation by executing the
same set of exploratory behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used to update the tool’s
representation. Thus, the accuracy of the representation can be directly tested
by the robot. It was demonstrated how the robot can use this approach to adapt
to changes in the tool’s properties over time, e.g., tools that can break.

A shortcoming of the behavior-grounded approach is that there are tool affor-
dances that are unlikely to be discovered since the required exploratory behavior
is not available to the robot. This problem has also been observed in animals,
e.g., macaque monkeys have significant difficulties learning to push an object
with a tool away from their bodies because this movement is never performed in
their normal daily routines [23]. This problem can be resolved, however, if the
ability to learn new exploratory behaviors is added.

There are some obvious extensions to this work that are left for future work.
First, the current implementation starts the exploration of a new tool from
scratch even though it may be similar to an already explored tool. Adding the
ability to rapidly infer the affordances of a new tool from its shape similarity to
previous tools would be a nice extension.

Second, the current implementation uses a purely random behavioral babbling
exploration procedure. Different strategies that become less random and more
focused as information is structured by the robot during the exploration could
be used to speed up the learning process.

Third, the behavior-grounded approach should be compared experimentally
with planners for pushing objects (e.g., [24]). We expect that the behavior-
grounded method would approach asymptotically the accuracy of these planners
as the number and diversity of the exploratory behaviors is increased. We also
expect, however, that our approach would excel in situations that cannot be
predicted by the planners, e.g., tools that can break or objects whose center of
mass can shift between trials.
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Abstract. Function-based object recognition provides the framework
to represent and reason about object functionality as a means to rec-
ognize novel objects and produce plans for interaction with the world.
When function can be perceived visually, function-based computer vision
is consistent with Gibson’s theory of affordances. Objects are recognized
by their functional attributes. These attributes can be segmented out
of the scene and given symbolic labels which can then be used to guide
the search space for additional functional attributes. An example of such
affordance-driven scene segmentation would be the process of attach-
ing symbolic labels to the areas that afford sitting (functional seats)
and using these areas to guide parameter selection for deriving nearby
surfaces that potentially afford back support. The Generic Recognition
Using Form and Function (GRUFF) object recognition system reasons
about and generates plans for understanding 3-D scenes of objects by per-
forming such a functional attribute-based labelling process. An avenue
explored here is based on a novel approach of autonomously directing
image acquisition and range segmentation by determining the extent to
which surfaces in the scene meet specified functional requirements, or
provide affordances associated with a generic category of objects.

1 Introduction

All computer vision systems require some type of representation. Function-based
representation, such as that used in the GRUFF (Generic Recognition Using
Form and Function) system [38], is a move toward more generic repesentation
by capturing entire classes of objects with simple definitions of their functional
requirements. The domain of objects Gruff has concentrated on is man-made
objects with functional attributes that can be derived by visual inspection. For
any particular object category, there is some set of functional properties shared
by all objects in that category.

Model-based vision systems proceed from the assumption that a model is
available for each object. Alternately, function-based vision systems seek to cat-
egorize sets of scene surfaces as meeting the requirements for membership within
a class of objects (e.g. dishes, furniture, handtools). This results in an approach
that is more scaleable in terms of recognition of novel objects and simplifica-
ton of path-planning for navigation in previously unencountered spaces. When
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function can be perceived visually from surfaces within a space for these goals,
function-based computer vision is consistent with Gibson’s theory of affordances
[11]. Function-based recognition is not, however, consistent with Gibson’s claim
that we perceive affordance properties of the environment in a direct and imme-
diate way. Processing must take place to make the association of the function to
the structure. For example, in the Gruff system, the definition of a generic ob-
ject category is defined as the composition of the required functional attributes.
For example:

arm chair ::= provides seating surface + provides stability
+ provides back support surface + provides arm support

Recognition is conceptualized as the labelling of the object, as depicted in Figure 1.

Fig. 1. Object correctly classified as chair labelled for its functional properties

As previously suggested, representation systems which support generic object
recognition offer several promising advantages over traditional model-based vi-
sion systems. In model-based approaches, the computer’s task is to identify spe-
cific objects based on stored models that represent possible views of the objects
to be recognized. Alternatively, in a function-based approach, specific structural
models are disregarded, in favor of shape analysis to determine if the objects are
usable within the constraints of particular category of objects. Figure 2 provides
an image of two chairs as an example, showing how function-based reasoning is
used to segment objects in the scene by attaching labels such as provides sittable
surface and provides back support. The functional evidence described by these
labels can then be combined to form final scene segmentation and labelling of
image areas as chairs.

While the labelling concept may appear simple, issues such as non-uniform
lighting, occlusion of various objects, and perceptual ambiguities make the se-
lection of an “optimal” parameter set for image acquisition, segmentation, and
recognition inherently difficult [13]. Although some existing research has ex-
plored the concept of “navigational functionalities” using motion, for example,
to classify threats, obstacles, and landmarks [31], much of the existing literature
has paid scant attention to the use of functional analysis to drive alternative
image acquisition strategies or to clean-up initially noisy data so that a more
representative set of symbolic labels is determined.
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(a)

provides sittable
    surface

provides back
    support

(b)
(c)

Fig. 2. (a) Left camera intensity image. (b) Derived range image. (c) Extracted 3-D
surfaces with functional requirement-level labels.

The subfields of active vision and scale-space theory have been proposed in
the computer vision community as methods to address some of these issues and
improve system robustness. Active vision encompasses the controlled change
of the parameters of the sensory system to facilitate vision [3,6], while scale-
space theory describes the implications of scale of observation on developing
methods for analyzing measured data [21,23,24]. Both approaches recognize that
automation is the key; techniques which scale-up to more numerous and more
complex environments are necessary to store, access, and process the volumes of
information a vision system may acquire in as simple a task as navigating one
floor of an office building. In our research, we are exploring utilizing measures of
functional characteristics in a scene at various scales to drive parameter selection
for further exploration.

The following sections provide background information on computer vision
systems incorporating these concepts, as well as detailed descriptions of the Small
Vision System (SVS) software [20] and Generic Recognition Using Form and
Function (Gruff) object recognition system [38] utilized in this work. Finally,
an introduction to the design and testing strategies of Gruff’s new affordance-
based automatic parameter selection mechanisms is presented.

2 Background

2.1 Active Vision and Attentional Scene Segmentation

Visual servoing (using visual sensors to control motion) in robotic applications is
perhaps one of the simplest examples of active vision principles [16]. Early work
in the area of incorporating function from motion includes Bogoni and Bajcsy’s
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investigations of manipulatory interactions, such as piercing [5]. However, as
computer vision systems endeavor to solve even more complex tasks, change
of motion parameters alone is often insufficient. A system may in fact need to
remain stationary and analyze its current position with alternative sensors, or
process its current state of information in a different manner in order to navigate
the environment in the most efficient or safe manner possible. Along these lines,
Maver and Bajcsy have examined using occlusions as a guide to planning the
next view [26].

More recently, Fitzpatrick and colleagues have explored system modes that
support a “learning to act” paradigm for robotic exploration [10]. Their experi-
ments in this area thus distinguish between a “discovery mode” where a visual
system analyzes and processes the consequences of motor acts, and a “goal-
directed mode” where a system utilizes the acquired knowledge to select the
motor acts that map to specific visual events (e.g., movement in a particular
direction).

Brown, Eklundh and colleagues have also investigated alternative strategies
for selective perception and attentional scene segmentation [25,28]. The concept
of goal-oriented resegmentation was explored in the development of the VISIONS
Image-Understanding System, pioneered by Hanson and Riseman in the 1980’s
[13]. These systems analyzed outdoor scenes of houses and roads, and used at-
tributes such as color, texture, shape, size, location, and relative location to drive
scene segmentation.

2.2 Generic Object Recognition Utilizing Function-Based
Reasoning

As opposed to an attribute-based or model-based matching method of perform-
ing scene segmentation, a function-based approach analyzes the functionality of
surfaces, as they are oriented in the scene, to determine if specified sets of func-
tional requirements can be met. The idea of using function to represent object
categories for recognition purposes is not new. Binford and Minsky, among other
researchers, have argued that object categories are better defined by focusing on
the intended functionality of objects [4,27]. The concept of how the use of func-
tion could be integrated into a computer vision system has matured over the
years. One body of work has looked at problems for which the assumed input is
a complete symbolic description (e.g., a semantic network) of an object and its
functionally relevant parts [42,43]. This well-known work by Winston et al. ex-
plores reasoning by analogy between parts and functional properties of objects.
Rivlin et al. also integrated function and object parts “by combining a set of
functional primitives and their relations with a set of abstract volumetric shape
primitives and their relations” [30].

Another body of work has concentrated on producing and recognizing a
function-oriented symbolic description of the object through reasoning about the
“raw” shape description rather than decomposing the object into parts, with the
assumption of a complete 3-D shape description (e.g., a boundary representation)
of an object provided as input [9,19,34,35,39]. These works bypassed the “real”
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vision problem, at least to some extent, by assuming complete shape models as
input. Functional information gained through an initial evaluation of an object
can be also used to help guide interaction with the object. Interaction can then be
performed based on hypothesized areas of functional significance [7,18,29,33,41].
Functionality in object recognition has continued to gain attention as an alterna-
tive to the strict model-based approach [37,38]. A broad sampling of other work
that falls into this category can be found in the proceedings of the 1993 and
1994 AAAI Workshops on reasoning about object function [1,2] and the special
issue of Computer Vision and Image Understanding on functionality in object
recognition [5,8,12,14,30,31].

3 Experimental Platform and Overview of Data Flow

Figure 3 provides a summary of the Gruff architecture and provides additional
details on how its subsystems communicate. As noted by the numbering, the first
step in the process is to invoke the Model Building Subsystem to extract surfaces
(reporting information about the faces and vertices that can be used to build a
3-D model). The Shape-based Reasoning Subsystem is then invoked to use this
information and apply concepts of physics and causation to the 3-D surfaces,
using operations such as clearance and stability. The results of this analysis
are reported in a text file. Finally, the Interaction-based Reasoning Subsystem
reads this text file and is subsequently invoked multiple times, using operations
to control robot arms and cameras and to perform image processing, in order to
confirm the shape-suggested functionality of the surface model. The final results
of this subsystem are also reported in a text file.

Such a design is similar in several respects to a blackboard architecture-based
system, such as that used in the the road scene understanding system developed
by Lapierre, et al. [22]. For example, in the Gruff-I (Gruff using interac-
tion) system, a single “supervisor” program invokes independent model building,
shape-based and interaction-based “specialist” programs, each of which provides
a partial interpretation of the current scene, using different sensors and data
formats. The controlling program focuses the activities of the sensors according
to the success or failure of the interaction. As Lapierre pointed out, there are a
number of advantages to this modular approach, such as the simplicity of adding
new sensors and specialists, the ease of program maintenance and the support of
software re-usability, in that well-designed specialists can be used to solve other
problems.

The Gruff system utilized in this research has been tested on hundreds of
simulated and real objects and scenes and has been accepted in the literature
as a viable and successful generic object recognition system [38,40,41,32]. For a
sampling of real objects, see those in Figure 4, created from a variety of materials
(Styrofoam, balsa wood, paper and sponge).

Knowledge in the Gruff system is of three types:

– A category hierarchy which specifies superordinate, basic level and subordi-
nate categories.
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Communication Mechanism

Subsystems report results on current interpretation of scene

Model Building Subsystem Shape-based Reasoning Subsystem

GRUFF-I
(supervisor)

1 2

determine what

operations:
clearance
stability

determine where

operations :
segment range image
build OPUS model

the object is areas to interact with

apply force
(specialist)

observe deformation
(specialist)

extract areas for deformation analysis

operations:
snap image

analysis of intensity structure
analysis of robot sensor feedback

interact with object areas

operations:
transport,

grasp, ungrasp
pour

Interaction-based Reasoning Subsystem

determine how
object areas

to interact with 

3

4

5

etc.

Fig. 3. Communication in the Gruff-I system. The subsystems communicate via
shared files which contain information about how each subsystem interprets the scene.

furniture ⇐⇒ chair ⇐⇒ arm chair

– Functional properties that define each category (provides sittable surface,
provides stability, ...).

– Knowledge primitives used to reason about shape

The Gruff system is capable of providing the labels shown in Figure 2-c
based on an understanding of generic categories of objects, stored internally
within the system’s knowledge definition tree. System developers have defined
this tree for the generic sets of objects expected to be encountered by the Gruff



Function-Based Reasoning for Goal-Oriented Image Segmentation 165

(a) furniture-like objects

(b) dish-like objects

A1 A2 A3 A4

A5 A6 A7 A8

A9

B1 B2 B3 B4

B5 B6 B7 B8

B9

Fig. 4. Functional and non-functional object models. Objects A1 and B1 represent
functional objects. Alternately, the remaining objects fail for the following reasons:
deformable (A2, A3, A5, A9, B2, B3, B4, B8), unstable (A7, B5), non-sittable (A4 due
to hole in seat, A6 due to seat angle), inability to provide containment (B6 due to hole
in side, B7 due to bottomless), and incompatible shape dimensions for average user
(A8 due to seat area exceeding average, B9 due to limited height).
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Name:

Realized                              Functional
by:                                       Plans:

CONVENTIONAL CHAIR

PROVIDES STABLE SUPPORT

Name:

Realized                              Functional
by:                                       Plans:

STRAIGHT BACK CHAIR

PROVIDES SITTABLE SURFACE PROVIDES BACK SUPPORT

Fig. 5. Portion of Gruff ’s knowledge representation tree representing the generic
object category straight back chair

Capture
Image Pair

Calculate
Dispartity and 

Range Data

Evaluate
Range Data

Perform/Evaluate 
Range

Segmentation

Perform/Evaluate
Object

Recognition

Fig. 6. Flow of data from image acquisition to final function-based scene labelling

system. While not included in this paper, additional research exploring the effort
and time for GRUFF to learn these parameters is explored in [38]. For example,
as shown in Figure 5, to be recognized by Gruff as a straight back chair, the
list of 3-D surfaces derived from a range image of the scene must meet three
functional requirements. The first requirement, provides stable support, cannot
be confirmed without interaction. When evaluating real data extracted from a
scene the assumption is that if a surface is observed in a certain location it is
somehow being supported in that location. Satisfying the two additional require-
ments, provides sittable surface and provides back support, involves a search in
the derived surface list for (1) a flat sittable surface parallel to the ground plane
and (2) nearby back surface(s), perpendicular to the ground plane.

When the goal of the system is to find all “chairs” in a scene, the focus of
attention can be limited to surface areas within a certain height range, while
temporarily ignoring other data. If no surface within the proper height range to
function as a seat can be found, no further evaluation of the current image is
warranted, and the system can be directed to an alternative viewpoint. Alter-
natively, if the system’s goal is to find a back support for a potential sittable
surface that has already been discovered, the focus of attention can be restricted
to the immediate area of the sittable surface. Each of these scenarios provide
different cues that can be used by the object recognition system to best set the
parameters to gain optimal data for the current task.

Figure 6 shows the flow of data as stereo image pairs are acquired and pro-
cessed by the SVS software [20] and Gruff subsystems. As indicated in Figure
6, greyscale images from the left and right cameras are combined into a disparity
map. This map represents the disparity between the left and right images for
corresponding points in the images and is calculated using an area-correlation
algorithm within the SVS software. [20]. This information is then processed to
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Name:       Cup

Type:       CATEGORY

Function Verification Plan: 
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Fig. 7. Verifying the functional plan for a cup. This involves instructing the robot arm
to interact with the object in a manner consistent with its shape-suggested function-
ality.

produce a range image where image locations include the 3-D coordinates of each
point in the image. The 3-D points associated with the final range image are then
segmented utilizing the YAR segmentation algorithm developed by Hoover, et
al. [15]. Post-processing of the final segmentation includes erosion and dilation
to extract a final list of planar, non-intersecting, “floating” scene surfaces that
are provided as input to the Gruff system.

The Interaction-based Reasoning Subsystem uses information derived from
the vision and robot components in order to direct interaction with the object in
the scene to confirm functionality. This subsystem begins by instantiating a func-
tion verification plan, which contains a representation of how reasoning about
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physical interaction should occur, as shown in Figure 7. The goal of this sub-
system is to use the 3-D information derived from the visual sensors, along with
the output of the shape-based analysis, to direct the robot arm to interact with
particular locations on the object, defined in terms of the robot arm-centered
coordinate system. The success or failure of this interaction is subsequently de-
termined through analysis of 2-D intensity images and robotic sensor feedback
obtained during the interaction.

3.1 Parameter Sets, Metrics and Measures

The hardware platform underlying the Gruff system has varied over the years
and has included both structured light scanners and numerous custom-built and
off-the-shelf stereo vision systems. In general, across the structured light scanner-
based systems, we observed about a 20-30% loss of usable data or models within
each subsystem (model-building, shape-based reasoning, and interaction-based
reasoning) [41]. Assessing our system to determine the “optimal” system param-
eter set to mitigate these data losses, in terms of producing the most metrically
accurate points for segmentations is the natural progression of our research.
Using affordance-based criteria to drive this parameter selection means using
functional attributes derived from preliminary processing to drive additional pa-
rameter selections that yield metrically accurate data (low depth errors, minimal
loss of observed data points, and low surface fitting differentiation compared to
known ground truth). With each surface extraction, the GRUFF object recog-
nition system returns an overall metric in the range 0.0 to 1.0 according to how
well the extracted surfaces in the scene met the functional requirements of an
object category, as follows [38]:

associationMeasureObjectRec = f(functionalReq1, functionalReq2, ...) (1)

The final assessment of the goodness of fit for a parameter set for a given
set of extracted surfaces is then based on an evaluation of the impact of all
these metrics (decreased errors and data loss). By learning about how the choice
of parmeter set determines the resulting extracted surfaces, we hope to at-
tain a higher value for survival of surfaces with functional attributes leading to
categorization.

4 Next Steps for GRUFF

As described in the previous section, the goal is to investigate automating param-
eter selection to provide cleaner and more complete data for surface extraction
that can be used for both recognition and successful navigation. Initial work in
this area has been conducted using the SVS setup. After setting up the above
described hardware and performing the calibration procedures outlined in the
SVS software package, we undertook an additional set of experiments to deter-
mine the overall accuracy of the collected data at various depths. This involved
placing a test cube in the scene at incremental positions in front of the stereo
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head and recording the differences between manually acquired and SVS-derived
distances measured to the n=6 corner points of this object. The distance differ-
ences were recorded to determine the initial impact of varying the confidence,
disparity, window, and x-offset parameters. An observed mean percent error was
calculated for each distance using the following equation:

depthErrorPercentPreEval =

�ncorners
i=1 (depthobserved

i −depthground truth
i )

depthground truth
i

ncorners
(2)

These errors proved to be low, with the lowest value being 0.4% and the
highest percent error being 11.8%. The results of this test showed that the system
was most accurate at distances less than 2.5 m.

In the next stage of analysis, we have begun testing the system in a task-
driven mode, using the ideal starting parameter set derived above, and feedback
from the final object recognition stage. As indicated in Figure 8, in this mode of
operation, the system is presented with a new scene and autonomously corrects
parameters to determine an “optimal” segmentation of the surfaces derived from
the corresponding images, as determined by the final metric from the Gruff

system (associationMeasureObjectRec). The starting parameter set and initial
recognition results are used to determine coarse locations of potential sittable
surfaces. The center of these surfaces is then used to refine parameter set choices
applicable for surfaces at the derived distance. The success of this mode of oper-
ation of the system is measured by how often the system self-adjusts a parameter
set that subsequently leads to higher recognition results.

Use Task
Information

Reset
Parameters

?

Reset
Paramters

Capture
Image Pair

Calculate
Dispartity and 

Range Data

Evaluate
Range Data

Perform/Evaluate 
Range

Segmentation

Perform/Evaluate
Object

Recognition

Fig. 8. Task-driven flow of data from function-based scene labelling to refinement of
image acquisition and range segmentation parameters

The greatest disadvantage to stereo vision is that most planar surfaces do not
appear in the range data because of the lack in texture [20]. However, the work
presented here is extensible to other image acquisition systems, such as laser
range finders or structured light scanners. Future work that we are exploring
in this project includes indexing into our parameter sets to guide both rough
(global) and fine (local) path planning for a navigation unit.

5 Conclusions

It was Gibson’s assumption that we perceive in order to operate on the environ-
ment and that perception is designed for action. Affordances are the perceivable
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possibilities for action. Gibson’s theory of affordances is consistent with function-
based vision. An object affords support by being flat, horizontal and positioned
at the proper height for sitting, all attributes that can be confirmed visually.
The interesting result of using such an approach for object recognition is that
the system will many times “recognize” or “categorize” objects that were not
originally designed for the desired task, but can be used to fulfill a specified
function. For example, when looking for a place to sit down, the GRUFF system
incorrectly identified a trash can as a viable chair by simply turing it over and
sitting on the bottom. Is the system wrong? Not necessarily. Gibson wisely ar-
gued that perception of an affordance was not the same as classifying the object
[11]. This lends even greater support to function-based vision when the goal is
task-oriented in an unknown environment.

The GRUFF object recognition system reasons about and generates plans
for understanding 3-D scenes of objects by performing a functional attribute-
based labelling process. Due to the sequence of processes that must take place,
this approach is not considered direct or immediate perception of the affordance
properties as Gibson claims we perceive such properties. The systematic steps,
however, do not detract from the perception of many different possiblities for
action that cannot be captured in most model-based recognition systems.

We have proposed a novel approach to acquiring and managing parameter set
selection to guide initial and refined scene segmentations. Where you are looking
for information in an environment and the final task of the system are just a few
of the driving forces behind what determines the best parameter settings for an
object recognition system to use.
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Abstract. In this position paper, we present an outline of the MACS
approach to affordance-inspired robot control. An affordance, a concept
from Ecological Psychology, denotes a specific relationship between an
animal and its environment. Perceiving an affordance means perceiv-
ing an interaction possibility that is specific for the animal’s percep-
tion and action capabilities. Perceiving an affordance does not include
appearance-based object recognition, but rather feature-based percep-
tion of object functions. The central hypothesis of MACS is that an
affordance-inspired control architecture enables a robot to perceive more
interaction possibilities than a traditional architecture that relies on
appearance-based object recognition alone. We describe how the con-
cept of affordances can be exploited for controlling a mobile robot with
manipulation capabilities. Particularly, we will describe how affordance
support can be built into robot perception, how learning mechanisms
can generate affordance-like relations, how this affordance-related infor-
mation is represented, and how it can be used by a planner for realizing
goal-directed robot behavior. We present both the MACS demonstrator
and simulator, and summarize development and experiments that have
been performed so far. By interfacing perception and goal-directed ac-
tion in terms of affordances, we will provide a new way for reasoning
and learning to connect with reactive robot control. We will show the
potential of this new methodology by going beyond navigation-like tasks
towards goal-directed autonomous manipulation in our project demon-
strators.

1 Introduction

In Cognitive Science, the term affordances was first coined by the perceptual
psychologist J.J. Gibson [1] to denote a resource or support that the environ-
ment offers an animal for action, and that the animal must be able to directly
perceive and employ. The concept denotes a mutual relationship between ani-
mal and environment, and is related to modern concepts like “situatedness” and

E. Rome et al. (Eds.): Affordance-Based Robot Control, LNAI 4760, pp. 173–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



174 E. Rome et al.

“embeddedness”. The concept of affordances has, since its conception, proven
to have a strong appeal in a wide range of fields, ranging from design [2] and
neuroscience to robotics.

In robotics and artificial intelligence, affordances offer an original perspective
on coupling perception, action and reasoning. However, despite its appeal, the
use of affordances has mostly been confined to an inspiration source in robotics
and that no systematic study on how this concept can be utilized in robot
control has been made. The main reason behind this is the mist surrounding this
elusive notion, created by the verbose definitions of affordances and its different,
sometimes conflicting uses. Although a number of attempts were made towards
formalizing this concept in Ecological Psychology [3,4] and in Computational
Linguistics, none were provided a good basis over which this concept be utilized
at different aspects of robot control.

After this characterization, we illustrate briefly why the concept of affordances
may be beneficial for the use in robot control: Firstly, the concept of affordances
links perception, action, learning and reasoning in an agent-specific way. Thus
it bears the potential for a new engineering method for a biologically inspired,
hybrid (reactive and deliberative) control architecture for mobile robots with
manipulation capabilities. Secondly, the complementarity of the object and the
affordance notions may allow a robot a greater flexibility for performing tasks.
A robot system that uses object-centered perception may need to abort a mis-
sion if objects of a certain class that are required to reach a (sub-)goal are not
available. In those cases where an affordance (like a function) of this object is
more important than its sensorial appearance, affordance-based perception may
be more appropriate, since it allows the robot to perceive and use objects with
the same function that belong to a completely different object class, that is, it
helps finding more alternatives for action.

The main objective of the MACS project is to explore and exploit the con-
cept of affordances for the design and implementation of autonomous mobile
robots acting goal-directedly in a dynamic environment. The aim is to develop
affordance-inspired control as a method for robotics. That involves making af-
fordances a first-class concept in a robot control architecture. By interfacing
perception and action in terms of affordances, the project aims to provide a new
way for reasoning and learning to connect with reactive robot control. The poten-
tial of this new methodology will be shown by going beyond navigation-like tasks
towards goal-directed autonomous manipulation in the project demonstrators.
All over, MACS aims at embedding its technical results into cognitive science.

In the MACS project, there is explicit support for the affordance concept in
our architecture and the hypothesis is that the resulting performance of the robot
will benefit in terms of robustness and generality. In fact, these are essentially
the only criteria that can be used to evaluate empirically whether an affordance-
based robotic system is better than a non-affordance-based one.

Thus, the main result of MACS will be a working, integrated robot system,
based on the Kurt3D robot, that serves as a proof of concept for the affordance-
inspired robot control approach. Other results of the project will be a formal
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theory, a dedicated simulation environment, a specifically taylored learning ap-
proach for generating affordance representations, an affordance-based planner,
feature extractors and other software for function-centered perception, plus dis-
semination of the results.

The remainder of the paper is organized as follows. We start with a brief
analysis of the state of the art in affordances related research in (ecological)
psychology, including brief reviews of recent formalizations and theories of af-
fordances. The next section reviews briefly the state of the art in affordance-
related research, both in Ecological Psychology and in Robotics. The following
three sections describe the state of work and results in the areas of perceiving
and learning affordances, and using affordance representations for goal-directed
action and planning. The central section on architecture reviews related work,
provides basic definitions of the MACS approach, including the definition of a
agent (or robot) affordance, and outlines the affordance-inspired robot control
architecture developed in MACS.

The architecture has been and is being tested both in simulation and a real
demonstration testbed including the mobile robot Kurt3D with its basic ma-
nipulation capabilities. Both facilities and some of the experiments are described
in the next section. We conclude with a summary of our approach and the main
results, and provide outlines of both the remaining work and possible future
work.

2 Affordances in Ecological Psychology

J.J. Gibson (1904-1979) is one of the most influential psychologists of the 20th
century, who aimed to develop a “theory of information pick-up” as a new theory
of perception. He argued that an organism and its environment complement
each other and that studies on the organism should be conducted in its natural
environment rather than in isolation, ideas that later formed the basic elements
of Ecological Psychology. The concept of affordance was conceived within this
context.

Based on his studies of meaningful optical variables1 and the Gestaltist con-
ception of immediate perception of meanings of the things, J.J. Gibson built
his own theory of perception and introduced the term affordance to refer to the
action possibilities that objects offer to an organism, in an environment. The
term affordances first appeared in his 1966 book [5], and is further refined in his
later book [1]. In this book, the description of the affordance concept was dis-
cussed in a complete chapter, which generally laid out the fundamental aspects
of affordances:

“The affordances of the environment are what it offers the animal, what
it provides or furnishes, either for good or ill. The verb to afford is found

1 For example optical center of expansion of the visual field was such an optical variable
which was meaningful for a pilot trying to land a plane, indicating the direction of
the glide, and helping him to adjust the landing behavior.
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in the dictionary, but the noun affordance is not. I have made it up. I
mean by it something that refers to both the environment and the animal
in a way that no existing term does. It implies the complementarity of
the animal and the environment.” (J.J. Gibson, 1979/1986, p. 127)

J.J. Gibson believed that affordances were directly perceivable (a.k.a. direct
perception) by the organism, thus the meaning of the objects in the environment
were directly apparent to the agent acting in it. This was different from the con-
temporary view of the time that the meaning of objects were created internally
with further “mental calculation” of the otherwise meaningless perceptual data.

The discussions on the perception of object affordances naturally had some
philosophical consequences on the much debated object concept.

“The theory of affordances rescues us from the philosophical muddle of
assuming fixed classes of objects, each defined by it common features
and then given a name. . . . You do not have to classify and label things
in order to perceive what they afford.” (J.J. Gibson, 1979/1986, p. 134)

Gibson goes on to state that

“... If you know what can be done with a graspable object, what it
can be used for, you can call it whatever you please. ... The theory of
affordances rescues us from the philosophical muddle of assuming fixed
classes of objects, each defined by its common features and then given
a name. ... But this does not mean you cannot learn how to use things
and perceive their uses. You do not have to classify and label things in
order to perceive what they afford.” [1, p. 134].

Thus, objects and affordances are complementary in the sense that one object
class may offer a multitude of affordances, and one affordance may be offered by
a multitude of object classes.

J.J. Gibson’s view of studying organism and environment together as a sys-
tem (including the concept of affordance) has been one of founding pillars of
Ecological Psychology. Following the formulation of the theory of affordances,
the Ecological Psychology community started to conduct experiments in order
to verify that people are able to perceive the affordances of the environment and
to understand the mechanisms underlying this perception. These experiments
[6,7,8,9,10,11] aimed at showing that organisms (mostly human) can perceive
whether a specific action is do-able or not-do-able in an environment. This im-
plies that what we perceive are not necessarily objects (e.g. stairs, doors, chairs),
but the action possibilities (e.g. climbable, passable, sittable) in the world. Al-
though the number of these experiments is quite high, the diversity in them is
rather narrow. They constitute a class of experiments characterized by two main
points: taking the ratio of an environmental measure and a bodily measure of the
human subject; and based on the value of this ratio, making a binary judgment
of whether a specific action is possible or not.

The first point gives us a clue about how the experimenters interpreted affor-
dances. Since affordances were roughly defined as the properties of the environ-
ment taken relative to the organism acting in it, the effort was to show that the
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ratio between an environmental measure and a bodily measure of the organism
have consequences for behavior. This ratio must also be perceivable, so that the
organism is aware of this measure which, in a way, determines its behavior’s
success.

Warren’s stair-climbing experiments [6] have generally been accepted as a sem-
inal work on the analysis of affordances, constituting a baseline for later exper-
iments which seek to understand affordance-based perception. In these studies,
Warren showed that organisms perceive their environment in terms of intrin-
sic or body-scaled metrics, not in absolute or global dimensions. He was able to
calculate the constant, so called π proportions, that depend on specific proper-
ties of the organism-environment system. There exists one such ratio per each
affordance, and they solely depend on the functionally relevant variables of cor-
responding actions. For instance, a humans judgment of whether he can climb
a stair step is not determined by the global dimension of the height of the stair
step, but by its ratio to his leg-length.

In [7], Warren and Whangs showed how the perception of geometrical dimen-
sions such as size and distance is scaled relative to the “perceived eyeheight” 2 of
the perceiver, in an environment where the subjects were to judge the affordance
of walking through an aperture. Marks’ surface sitting and climbing experiments
[8] also incorporated a similar approach. Some of these studies[9,10] criticized
former studies because they limited themselves to only one perceptual source,
namely visual information. Instead of limiting themselves to visual perception,
they studied haptic perception in infant traversability of surfaces and critical
slant judgment for walking on sloped surfaces. While in these experiments hu-
man subjects were asked to judge whether a certain affordance exists or not in a
static environment, Chemero[11] conducted other experiments, in order to prove
that changes in the layout of affordances are perceivable in dynamic environ-
ments, and found out that the results are compatible with critical ratio values.
Another important work is Oudejans et. al.’s [12] study of street-crossing behav-
ior and perception of critical time-gap for safe crossing. This work is novel since
it shows that not only static properties of the organism, but also its dynamic
state is important when deciding on its actions.

An overview of the mentioned experiments shows that they are mostly fo-
cused on the perception aspect of affordances. Other cognitive processes such
as learning, high level reasoning and inference mechanisms are not the subjects
of these experiments, and the link between affordances and these higher level
processes is not discussed.

3 An Affordance-Inspired Robot Control Architecture

3.1 Related Work

The concept of affordances is highly related to autonomous robot control and
influenced studies in this field. We believe that for a proper discussion of the
2 In [7], eyeheight is defined as the height at which a person’s eyes would pass through

the wall while walking and looking straight in a natural and comfortable position.
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relationship of the affordance concept to robot control, the similarity of the
arguments of J.J. Gibson’s theory and reactive/behavior-based robotics should
be noted first.

The concept of affordances and behavior-based robotics emerged in very sim-
ilar ways as opposing suggestions to the dominant paradigms in their fields.
J.J. Gibson constructed his theory based on the criticism of the then domi-
nant theory of perception and cognition, which favoured modeling and inference.
Likewise, behavior-based robotics was motivated by the criticism of the then
dominant robotic architectures, which favoured modeling and inference. This
parallelism between the two fields suggests that they are applications of the same
line of thinking to different domains ([13, p. 244]; [14]). Opposing to modeling and
inference, J.J. Gibson defended a more direct relationship between the organism
and the environment and suggested that a model of the environment and costly
inferential processes were not needed. In a similar vein, behavior-based robotics
advocated a tight coupling between perception and action. Brooks, claiming that
“the world is its own best model”, suggested an approach that eliminated all the
modeling and internal representation [15]. As a result, one can see the under-
lying concepts of affordances in existence in robot control architectures such as
subsumption architecture [16], the robot-schema architecture [17] and AuRA
[18].

Some roboticists have already been explicitly using ideas on affordances in de-
signing behavior-based robots. For example, Murphy [19] suggested that robotic
design can benefit from ideas in the theory of affordances such that complex
perceptual modeling can be eliminated without loss in capabilities. She tried to
prove her point with three case studies and drew attention to the importance
of the ecological niche in the design of behaviors. Likewise, Duchon et al. [14]
benefited from J.J. Gibson’s ideas on direct perception and optical flow in the de-
sign of behaviors and termed Ecological Robotics to be the practice of applying
ecological principles to the design of mobile robots.

The use of affordances within Autonomous Robotics is mostly confined to
behavior-based control of the robots, and that its use in deliberation remains a
rather unexplored area. This is not a coincidence, but indeed a consequence of
the lacks in J.J. Gibson’s theory. The reactive approach could not scale up to
complex tasks in robotics, in the same way that the theory of affordances in its
original form was unable to explain some aspects of perception and cognition.
The need to hybridize robotic control architectures can be considered similar
to the attempts in Cognitive Psychology to view affordances as part of a com-
plete cognitive model. While some cognitive models relate affordances only with
low-level processes [20], others consider their role in cognitive processes as well
[21,22,23]. Similarly in robotics, some hybrid architectures inherit properties re-
lated to affordances only at their reactive layer [18,24], while other studies exploit
how affordances reflect to high-level processes such as learning [25,26,23,27,28],
decision-making [29], and planning [30]. Recently a number of robotic studies fo-
cused on the learning of affordances in robots. These studies mainly tackled two
major aspects. In one aspect, affordance learning is referred to as the learning
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of consequences of a certain action in a given situation [27,28,30]. Stoytchev’s
[28,30] and Fitzpatrick et al.’s [27] work uses affordances as a higher-level con-
cept, which a developing cognitive agent learns about by interacting with the
objects in its environment. The robots in both studies execute certain actions
on certain objects, and observe and learn the change in the environment as the
consequence of the action. In other studies the focus lies on the learning of in-
variant properties of environments that afford a certain behavior [23,26,29]. In
[23], MacDorman proposes an architecture, where the robot learns a sensory-
motor mapping of its actions, and uses this learned model to make plans at the
deliberative level. The learned model is then used to predict the affordances of
objects in the environment. However, MacDorman defines affordances only in
terms of internal values of the robot (like “tasty” and “poisonous” things), and
not the physical changes it can create in the environment separating the process
of predicting the outcome of actions, from the process of predicting affordances.

Some hybrid architectures inherit the properties of reactive architectures in
their reactive components. For example, AuRA [18] is said to be influenced from
J.J. Gibson’s theory of affordances for using action-oriented perception in the
reactive component. In AuRA, each motor schema is associated with a perceptual
schema, which extracts the sensory input relevant for the particular behavior.
Similarly, in the SSS [24] architecture, the communication of lower and upper
layers is based on the idea of matched filters, which suggests that certain sensor
states are equivalent if they call for the same motor response. Although not
explicitly stated, we can further relate affordances to some deliberative processes
in hybrid architectures. For instance, the AuRA [18] architecture can be said to
perform deliberative modulation of perception, since plan execution occurs by
activating motor schemas and the relevant perceptual schemas specified by the
plan. Another example is the SFX [31] architecture in which the symbolic world
model depends on the current behavior, as a consequence of action-oriented
sensor fusion.

We would like to note, that the affordance theory of J.J. Gibson was mostly
used as a source of inspiration in autonomous robotics. As a result, only certain
aspects of the theory were used, and that no attempts to consider the implica-
tions of the whole theory towards autonomous robot control were made. In this
sense, the development of an “affordance-inspired robot control architecture”
that is designed to learn, detect, and use the affordances in the environment [32]
will be an important contribution to the field.

3.2 The MACS Approach to Affordance-Inspired Robot Control

The vast majority of robot perception approaches are either close perception-
action couplings for reactive behavior or oriented towards object recognition on
higher control levels. Also, object recognition is in many cases based on general
computer vision methods that do not account for the specifics of the robot
at hand, i.e. its sensory system and its actuator system. Only very few robot
perception approaches deal with recognition of functions that the environment
offers (cf. Sec. 5).
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We can state that a function-centered perception approach will realize a
view of the environment that is orthogonal to object-centered perception. Such
function-centered perception would potentially allow a robot to find more alter-
natives for acting in its environment. A robot mission that requires to find—
based on appearance only—and use certain objects in the environment will fail
if one or more of these objects cannot be found. But often the identity or ap-
pearance of an object may not be relevant for completing a task. A task could,
for instance, also be completed if the robot finds an alternative object that offers
the same functions as the original one (in J.J. Gibson’s terminology, one would
say: it affords the same action possibility). An affordance-inspired robot control
with a function-centered perception would allow a robot more flexibility in plan
execution and thus increase the likelihood of successfully completing a mission.
Thus, it would enhance a robot’s abilities to perceive and utilize the potential for
action that the environment offers, i.e. enable a robot to make use of affordances.
This is the central hypothesis of MACS.

MACS aims at realizing affordance-inspired control in a hybrid architecture
that allows goal-directed behavior based on function-centered perception, with
functions related to and grounded in the robot’s action capabilities. Affordance
support in the sense sketched in the previous sections will be built into several
levels of the architecture. In order to use affordance support for deliberate action,
i.e. for planning, we will need an explicit representation of the potential for action
or the functions that the enviroment offers, respectively. The formalization that
is the basis for such representations is described in [33]. In summary, a number of
formalizations have been proposed to clarify the concept of affordance in the field
of Ecological Psychology. To summarize briefly, Turvey [34] defined affordances
as ‘dispositions’ in the environment that get actualized with the interaction
of the organism and the environment. Different from Turvey’s formalism, which
attached affordances to the environment, Stoffregen [35] and Chemero [3] defined
affordances as relations within the organism-environment system. Independent
from these formalizations in Ecological Psychology, Steedman [36] formalized
affordances in Linguistics by providing an explicit link to action possibilities
offered by the environment, and by proposing the use of the concept in planning.
The authors are not aware of other robot control methods that make use of
explicit, symbolic affordance representations.

In order to distinguish our use of the term “affordance” from the use in Eco-
logical Psychology, we introduced the definition of an agent (or robot) affordance
[33,32] 3:

Definition 1 ((Agent) Affordance). An (agent) affordance is a relation be-
tween an agent and its environment which affords a capability. The agent/en-
vironment relation affords a capability if the agent

1. has the capacity to recognize that it is in such a relation between itself and
its environment, and it

2. has the ability to act to bring about that capability.

3 A similar but alternative formalization of affordances was also proposed in [37].
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This definition states that the affordance is a perceivable relation between the
subjective capabilities of an agent and the features of its surroundings. The
agent affordance definition is used whenever we are referring to or describing the
robot’s situation in its environment, e.g. in examples of the robot’s behavior or
in descriptions of experiments. For this purpose, we use the notions of entity,
(observed) behavior, and (observed) outcome. An example shall illustrate the
meaning of these notions. Given our mobile robot Kurt3D with its basic elec-
tromagnetic gripper as manipulation device, and given that there are magnetic
cans in its environment, we could say: “The robot has successfully lifted the
blue can.”, where some features of the blue can comprise the entity, lifting is the
observed behavior, and the successful execution resulting in the can attached
to the robot’s electromagnet is the observed outcome. The entity can be rep-
resented by a set of features perceived prior to the lifting behavior, the lifting
behavior can be represented as a sequence of basic actions, and the outcome
can be represented by a set of features perceived after the lifting behavior has
been executed. This leads to a straightforward definition of an (agent) affordance
representation [32]:

Definition 2 (Affordance Representation). An affordance representation
or affordance triple is a data structure:

(cue descriptor, behavior descriptor, outcome descriptor). (1)

Here, a cue descriptor or an outcome descriptor is specified as a list of attribute
value pairs. A behavior descriptor consists of one or more behavior identifiers.
Optionally, parameters for these behaviors can be specified.

Such representations can either be handcrafted or learned during an extended
initial learning phase as described in Sec. 6. The cue part of the representation
can be used to hypothesize the presence of a certain affordance in the environ-
ment that the robot searches for achieving the planned outcome. The feature set
comprising a cue needs only be sufficient for making such a hypothesis. It is nei-
ther required that the feature set is a sufficient representation of the manipulated
object, nor that all the cue features belong to this object.

After a certain amount of affordance representations have been created, the
robot shall make use of this information for deliberate action as described in
Sec. 4. A mission defined by a human operator could be the task of searching
“liftables” and stack these in an arbitrary location. The planner would create op-
erators that employ affordance representations, and an execution control would
monitor, as usual, the progress of task completion.

In order to implement these concepts, the proposed affordance-inspired control
architecture consists of two branches. A bottom-up branch goes from sensors via
a perception module (cf. Sec. 5) to a learning module (cf. Sec. 6) that generates
affordance representations. A top-down branch goes from a deliberation module
via execution control down to a behavior system that provides some basic robot
skills, including but not limited to driving, braking, map-building and lifting, or
moving and controlling the magnet.
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3.3 Architectural Building Blocks

The proposed affordance-inspired control architecture scheme is depicted in
Fig. 1. In this diagram, a red, solid arrow between components A and B in the
diagram is of type control flow. The arrow indicates that the control is passed
from A to B. The arrow does say nothing about the situations in which the con-
trol is passed, nor about the data that might be exchanged when passing control.
The designations close to such an arrow indicate qualitatively the nature of the
control flow, e.g. information request, configuration request etc. A blue, dashed
arrow between components A and B in the diagram is of type data flow. The
data flow arrow does not say anything about the circumstances, that is, the cur-
rent control states, under which the data are transferred. The designations close
to such an arrow indicate qualitatively the types of data that are passed from
A to B. Bold arrows indicate flows between modules, thin arrows intra module
flows. Data passed from module A to B are available to all components inside B.
Orange colored boxes are specific affordance support oriented components that
are usually not found in other control architectures.

The main architectural building blocks in this diagram are:

User Interface. Displays status information and allows a user both to guide
a robot manually through an action sequence and to just specify a mission
goal for the robot. The

Deliberation module. Converts a mission goal into an executable affordance-
based mission plan which is passed to the

Execution module. This module executes the mission plan, monitors its ex-
ecution, including successful or unsuccessful acting upon affordances. The
Execution module’s new Event and Execution monitor checks the existence
of affordance support cues and compares expected outcome with actual out-
come of an executed behavior control routine. The Execution control triggers
behaviors of the

Behavior System. This module provides a number of pre-programmed be-
havior control routines that can be viewed as basic skills of the robot. Some
behavior control routines are parametrizable and can be configured by other
modules, if necessary. The behaviors make use of

Actuators. That enable the robot to move about and to interact with its en-
vironment. They include the drive motors, the sensor servos, and the crane
arm motors. The

Sensors. Enable the robot to perceive its environment and its internal states,
Virtual sensors provide software state information, real sensors yield data
from the environment. All sensory data are first handled by the

Perception module. It relays sensory data, extracted features and status in-
formation (like active behaviors and their parameters) to the Learning mod-
ule, Execution module, Behavior System and Deliberation module. It can be
configured to look just for certain features that relate to searched affordance
support cues. Its Entity Structure Generation Module converts sensory data
into appropriate data structures for architectural affordance support.
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Fig. 1. Modules, data and control flow of the MACS control architecture. A solid arrow
between components A and B indicates control flow, a dashed arrow data flow. White
boxes are specific affordance support oriented components.

Learning module. Takes input from the Perception module and generates af-
fordance representations (affordance triples) to populate the new

Affordance Representation Repository. This repository is new and specific
to our affordance-based approach. It provides affordance representations for
use with the affordance-based Planner for goal-oriented, affordance-based
mission planning.

This architecture is implemented in such a way that it can be connected both
to the physical robot and the simulated robot via the same interface, just by
pushing a button. This enables us to test the system both in simulated and in
real environments.

In the next three sections, the affordance-based approaches of the main build-
ing blocks within this architecture, namely planning (Sec. 4), perception (Sec. 5)
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and learning (Sec. 6), are explained. An elaborate description of the behavior
system and its basic skills can be found in [38]. Before we conclude this arti-
cle, we present the physics-based simulator MACSim and the experimentation
environment, i.e. the demonstrator scenario and its elements in Sec. 7.

4 Representation of Affordances for Deliberation

Literature is rather sparse when it comes to more or less formal definitions for
representations of affordances. This is not surprising as representing them ex-
plicitly is actually against the ecological psychologist’s interpretation of directly
perceivable and usable affordances as it has always been postulated by Gibson.
While such a view on affordance without representation and reason has as well
been picked up in the area of robotic systems, e.g. by [19], we dissent from this
view arguing for the advantages of a clearly defined affordance concept through-
out the MACS project.

For the benefit of affordances for robotics, we diverge from Gibson’s original
view, following the line of argument of, for instance, MacDorman who justi-
fies learning and the explicit recognition, and thus implicit representation, of
affordances by stating:

“It is not surprising that Gibson underestimated the computational com-
plexity of vision, since he wrote before researchers had begun to explore
it seriously. [. . . ] Thus, the brain may need to process sensorimotor data
extensively and to spend time learning what kinds of invariance are use-
ful in recognizing affordances.” [39, p. 1003]

We are furthermore of the opinion that it makes indeed sense to reason about
affordances instead of acting directly upon an affordance percept. This point has
as well been picked up by [14] as they explicitly argue that an agent does not
merely respond to a directly perceived stimulus by applying the action that is
afforded in that situation. It is not controlled by the environment. It can rather
use the information provided by the affordances of a situation and reason about
them in a goal-directed manner selecting those afforded actions that will lead to
its goal.

The demand put on the MACS project was now to define an explicit, symbolic
affordance representation that the whole architecture and all its various compo-
nents are based on. Some of the following goes back to work done in [33] and has
already been introduced in [38]. The overall idea, however, is primarily inspired
by the work of Chemero [3] who first described an affordance as a perceivable
relation between an agent and its environment or, as we interpret it, between
the subjective capabilities of an agent and the features of its surroundings. We
extended this idea by introducing the definitions of an (agent) affordance and
an affordance representation (Definitions 1 and 2, Sec. 3).

Regarding Def. 2 of the affordance representation, one can understand its at-
tributes as features of the environment or even internal states of the robot while
the values are not restricted to distinct values but can also represent value ranges.
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The cue descriptor holds that filtered or raw sensory information that supports
the existence of the represented affordance whereas the outcome descriptor con-
tains the data as it was perceived by the robot while previously executing the
behavior referenced in the behavior descriptor. That descriptor, on the other
hand, refers to a robot behavior and a set of parameters that were used with
this robot behavior when the according cues and outcomes were monitored.

To subsume this definition an affordance is represented by:

– The cues for an affordance, that support it. These are the perceivable fea-
tures or attributes of the environment or the agent and their values or value
ranges. Attribute value pairs stored in a cue descriptor can thus be, for in-
stance, the relative distance to a test object, its color, or the different currents
propagated to the robot’s motors.

– The behavior descriptor refers to the behavior or sequence of behaviors the
robot has applied when this representation was created. To stick with the
last example this would be a lift action combined with the parameters like
motor current or crane movement that were used for the particular action.

– The outcome of any action or behavior executed upon the affordance. The
outcome represents the changes of the agent and the environment as far as
they can be perceived by the agent. Examples would be, that a blue colored
blob is being perceived at a higher position, relatively to the agent, if it has
applied a lifting action.

The different affordance representation triples that can both be hand-coded
or learned (see Sec. 6) are then used during runtime of the system to build up
and maintain a world model of the robot’s surroundings that is represented as an
affordance map. The different map regions hereby hold the information whether
a particular affordance type has been perceived in that area.

Given such a representation it is left to describe how affordances can be ex-
ploited for robotics by reasoning about them. The approach followed in the
MACS project, it is really only one approach to this matter, is to ground plan
operators by means of affordances. The idea behind this is that there are situa-
tions where one wants to achieve something but one does not actually care about
how or with the help of what object to reach the desired goal. For instance, when
one wants to weigh down a pile of paper one can do this by putting a rock, a
cup, or a book on that pile achieving the same effect with each of these items. In
other words, you only have to select any item that affords the weighing action.
This is the point where the affordance concept nicely comes together with the
approach to deliberation and planning within the MACS project.

The MACS planning system is based on a complete domain and problem
definition specified in the Planning Domain Definition Language (PDDL) [40].
The planner’s world model contains knowledge of where what kind of affordance
has been perceived and uses the availability of an affordance in a certain region of
the environment to plan an action in that region (cf. Fig. 10). Take the example
that the robot has to open a door by putting some weight on a switch. The
generated plan will be a sequence of operators to drive to a region where the
liftability affordance has been perceived, to lift a liftable item there, to drive
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to the switch and put the item, whatever it may be, on the switch. The plan
will thus contain a lift operator that gets implemented or grounded only during
the execution phase of the plan. The robot simply has to select an affordance
representation triple that belongs to the type of the liftability affordance and
whose cues of its cue descriptor can currently be perceived. By acting as specified
in that triple’s behavior descriptor, the robot implicitly chooses the next available
liftable item and lifts it; be it a rock, a cup, or a book.

The deliberation part of the MACS architecture thus reasons about affor-
dances in the sense that it goal-directedly selects the kind of affordance to act
upon; i.e. it decides to use the liftability affordance and not, for instance, a
pushability affordance. For a complete specification of the MACS deliberation
module refer to [41].

5 Perception of Affordances

In the context of ecological perception , as it was created by J.J. Gibson [1], visual
perception would enable agents to experience in a direct way the opportunities
for action. However, J.J. Gibson remained unclear about how this concept could
be used in a technical system. Neisser [42] replied to this concept with the
notion of a perception-action cycle that shows the reciprocal relationship of the
knowledge (i.e., a schema) about the environment directing exploration of the
environment (i.e., action), which samples the information available for pick up
in the environment, which then modifies the knowledge, and so on. This cycle
describes how knowledge, perception, action, and the environment all interact in
order to achieve goals. Our work on affordance-like perception is in the context
of technical systems based on a notion of affordances that ‘fulfill the purpose of
efficient prediction of interaction opportunities’.

In the project MACS we provide a refined concept of affordance perception
by proposing two processing stages in terms of a predictive module, an interac-
tion and an evaluation module (cf. Sec. 5.2). Affordance-like perception aims at
supporting control schemata for perception-action processing in the context of
rapid and simplified access to agent-environment interactions. Furthermore, we
argue that has not yet been sufficiently addressed, in particular with respect to
cue selection.

5.1 Related Work

Previous research on affordance based perception focused on heuristic defini-
tions of simple feature-function relations to facilitate sensor-motor associations in
robotic agents. Human cognition embodies visual stimuli and motor interactions
in common neural circuitry (Faillenot et al. [43]). Accordingly, the affordance-
based context in spatio-temporal observations and sensor-motor behaviors has
been outlined in a model of cortical involvement in grasping by Fagg and Arbib
[44], highlighting the relevance of vision for motor interaction [45]. Reaching and
grasping involves visuomotor coordination that benefits from an affordance-like
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mapping from visual to haptic perceptual categories (Wheeler et al. [46]). Within
this context, the MIT humanoid robot Cog was involved in object poking and
proding experiments that investigate the emergence of affordance categories to
choose actions with the aim to make objects roll in a specific way (Fitzpatrick et
al. [27]). The research of Stoytchev [30] analyzed affordances on an object level,
investigating new concepts of object-hood in a sense of how perceptions of objects
are connected with visual events that arise from action consequences related
to the object itself. Although this work innovatively demonstrated the relation
between affordance triggers and meaningful robot behaviors, these experiments
involve computer vision still on a low level, and do not consider complex sensor-
motor representation of an agent interaction in less constrained, even natural
environments.

Affordance based visual object representations are per se function based rep-
resentations. In contrast to classical object representations, functional object
representations (Stark and Bowyer [47], Rivlin et al. [48]) use a set of primi-
tives (relative orientation, stability, proximity, etc.) that define specific functional
properties, essentially containing face and vertex information. These primitives
are subsumed to define surfaces and form the functional properties, such as ‘is
sittable’ or ‘provides stable support’. Bogoni and Bajcsy [49] have extended this
representation from an active perception perspective, relating observability to
interaction with the object, understanding functionality as the applicability of
an object for the fulfillment of some purpose. However, so far, function-based
representations were basically defined by the engineer, and not learned from
interaction.

5.2 Stages in Affordance Perception

We developed a refined concept on affordance perception [50] by proposing (i)
an interaction component (affordance recognition: recognizing relevant events
in interaction via perceptual entities) and (ii) a predictive aspect (affordance
cueing: predicting interaction via perceptual entities). This innovative conceptual
step enables firstly to investigate the functional components of perception that
make up affordance-based prediction, and secondly to lay a basis to identify
the interrelation between predictive features and predicted event via machine
learning technology [51,52,50,53].

Fig. 2 illustrates the various stages within the affordance based perception
process for the example of the affordance fill-ability in the context of the op-
portunities for interaction with a coffee cup. Fig. 2(a) schematically illustrates
the detection of perceptual entities that would provide affordance cues in terms
of verifying the occurrence of a cup that is related to the prediction of being
fill-able in general. Fig. 2(b) shows in analogy entities that would underlie the
process of interaction of an agent with the cup by actually filling it up. Fi-
nally, Fig. 2(c) represents the entities corresponding to the final state of the
interaction with the outcome of a successfully filled coffee cup. These figures
illustrate that affordance cueing and affordance recognition must be conceptu-
ally separated and would involve different perceptual entities in general. While
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(a) (b) (c)

Fig. 2. Affordance recognition in affordance based perception for the example of the
affordance fill-able with respect to the impact of selecting appropriate features. The
seemingly simple interaction of filling up a coffee cup can be partitioned into various
stages in affordance based perception, such as, (a) affordance cueing by predictive
features that refer to a fill-able object, (b) identifying perceptual entities that represent
the process of the affordance related interaction (e.g., flow of coffee), and (c) recognizing
the final state by detecting perceptual entities that represent the outcome of interaction
(e.g., level of coffee in cup).

Fig. 3. Concept of affordance perception, depicting the key components of affordance
cueing and recognition embedded within (left) an agents perception-action cycle (cf.
Sec. 2, Def. 2)

affordance recognition actually involves the recognition of the interaction process
and its associated final state, affordance cueing will be solely determined by the
capability to reliably predict this future event in a statistical sense.

Fig. 3 depicts the innovative concept of feature based affordance perception
worked out in the MACS project (cf. Sec. 2, Def. 2). We identify first the func-
tional component of affordance recognition, i.e., the recognition of the affordance
related visual event that characterizes a relevant interaction, e.g., the capability
of lifting (lift-ability) an object using an appropriate robotic actuator. The recog-
nition of this event should be performed by identifying a process of evaluating
spatio-temporal information that leads to a final state. This final state should be
unique in perceptual feature/state space, i.e., it should be characterized by the
observation of specific feature attributes that are abstracted from the stream of
sensory-motor information.
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The second functional component of affordance cueing encompasses the key
idea on affordance based perception, i.e., the prediction aspect on estimating
the opportunity for interaction from the incoming sensory processing stream.
In particular, this component is embedded in the perception-action cycle of the
robotic agent. The agent is receiving sensory information in order to build upon
arbitrary levels of feature abstractions, for the purpose of recognition of percep-
tual entities. In contrast to classical feature and object recognition, this kind of
recognition is purposive in the sense of selecting exactly those features that ef-
ficiently support the evaluation of identifying an affordance, i.e., the perceptual
entities that possess the capability to predict an event of affordance recogni-
tion in the feature time series that is immediately following the cueing stage
of affordance based perception. The outcome of affordance cueing is in general
a probability distribution on all possible affordances, providing evidence for a
most confident affordance cue by delivering a hypothesis that favors the future
occurrence of a particular affordance recognition event. This cue is functional in
the sense of associating the related feature representation with a specific utility
with respect to the capabilities of the agent and the opportunities provided by
the environment, thus representing predictive features in the affordance based
perception system.

5.3 Implementation: Perception Module

The perception module includes an Entity Structure Generation Module (Fig. 1,
cf. also [33]) that generates appropriate data structures from sensory data in a
framework of entity structures. Starting from simple structures (e.g. raw sensory
data) these data structures are processed via transformation and/or combination
into more abstract ones, describing the scene (e.g. regions of different colors and
their relation) as well as affordances (e.g. regions with attributes like liftable,
traversable, etc.). The concept of computational units is employed to process
these structures within an overall abstraction hierarchy. Computational units
use Entity Trajectory Streams (i.e. series of entity structures over time) as in-
put and produce entity trajectory streams as output. These entity trajectory
streams provide input for the learning module, which learns suitable combina-
tions of computational units for affordance cueing. For an example, several entity
trajectory streams are combined in a final computational unit that classifies a
particular region in the camera images into ‘liftable’ or ‘non-liftable’. This clas-
sifier is encapsulated in the concept of the computational unit, with the benefit
of a clear interface to other modules in the architecture of the system.

For finding salient locations that might be interesting during the robot’s learn-
ing and mission phases, we employ a visual attention system called VOCUS [54].
VOCUS allows ‘bottom up’ detection of salient features in the environment as
well as a ‘top-down’ search for certain features related to affordance cues [55].
The VOCUS system was also enhanced to work with two cameras in order to
allow a triangulation of the position of salient regions relative to the robot. In
order to accelerate VOCUS and to reduce CPU workload, it has been reimple-
mented such that it can run on a GPU. The latter variant can compute foci
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of attention at 60 fps, i.e. it can detect salient regions in both camera images
at frame rate with little CPU usage [56]. This frees the CPU for other control
tasks.

VOCUS is mainly employed by a basic skill for perceiving interesting locations.
It computes foci of attention based on a saliency measure applied to elementary
features like color, brightness and orientation contrasts. The feature vector de-
scribing a salient location in an image is also provided as a computational unit,
i.e., VOCUS’ output can also be used by the learning module.

5.4 Learning in Affordance Perception

There are affordances that are explicitly innate to the agent through evolution-
ary development and others that have to be learned [1]. Learning the chains of
affordance driven actions can lead to learning new, more complex affordances
(cf. Sec. 6). In contrast to previous work on functional feature and object rep-
resentations, we stress the fact that functional representations must necessarily
contain purposive features, i.e., represent perceptual entities that refer to inter-
action patterns and thus must be selected from an existing pool of features by
means of machine learning.

In this context we demonstrated the learning of causal relationships between
visual cues and predictable interactions, using both 3D and 2D information
[51,52]. We verified the concept with a concrete implementation applying state-
of-the-art visual descriptors [57] and regions of interest that were extracted from
a simulated robot scenario and prove that these features were successfully se-
lected for their relevance in predicting opportunities of robot interaction by
means of decision trees [58].

Fig. 4(a) shows the application of local (SIFT) descriptors for the charac-
terization of regions of interest in the field of view. For this purpose, we first
segment the color based visual information within the image, and then associate
integrated descriptor responses sampled within the regions to the region feature
vector. The integration is performed via a histogram on local descriptors that
are labeled with ‘rectangular’ and ‘circular’ attributes, respectively.

On-going work is in the direction of extending the scope of predictability via
visual cueing using reinforcement learning [53]. Reinforcement learning [59,60]
as an on-line version of Markov decision processes (MDP) [61] is able to deter-
mine a specific perceptual state that owns the predictive characteristics for the
representation of an affordance-like visual cue. The learning process is applied
to bridging two basic components characterizing the interaction component, i.e.,
affordance recognition, and the predictive aspect, i.e., affordance cueing, respec-
tively. [62] presents the underlying theory and the experimental results from a
robotic system scenario demonstrating how affordance recognition can provide
the reinforcement signal to drive the propagation of reward information back in
the affordance perception process. Upon convergence of the stochastic learning
algorithm, we are able to identify an early perceptual state that enables to dis-
criminate the capability to predict a future interaction opportunity with high
confidence.
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(a) (b)

Fig. 4. Affordance based cueing of region determined perceptual states from learned
predictive cumulative rewards. (a) On the basis of a color blob detector, local descrip-
tors are classified into rectangular/circular (R/C) ones and the associated histogram
feeds here into the recognition of an affordance cue (with respect to lift-ability). (b)
Analyzed top and bottom regions are correspondingly classified as cues for lift-ability
or non-lift-ability, visualized in terms of green and red bars with bar sizes correlat-
ing to positive or negative reward, respectively (monitoring boxes, top), anticipating a
lift-able event.

There is huge potential in research on affordance perception towards extend-
ing the feature based representations towards object driven affordance-based
interaction, grounding the work on the visual descriptor information presented
here. Furthermore, the learning of affordance cues can be viewed in the frame
of developmental learning of meaningful sequences of affordance triplets [63],
opening a broad avenue for future research.

6 Learning of Affordances

The learning approach that was developed within the MACS project is an ap-
proach to acquire knowledge about relations that determine the interaction possi-
bilities between an agent and its environment. Within this approach an artificial
agent starts with basic interactions and uses more and more complex interac-
tions over time and thus gathers experience about what happens before, during
and after these interactions. These experiences are generalized by the agent, en-
abling it to act also in novel situations. Therefore the robot used starts with an
initial set of reflex like actions and is designed to be able to deal with a growing
set of (learned) actions. Thereby the approach is not limited to a special kind of
actions.

The set of basic reflex-like actions shall enable the robot to stack building
blocks. Whether two objects can be stacked or not dependents on the top re-
gion surface of the element that should provide the base, and depends on the
bottom region surface of the element that should be stacked on this base. The two
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surfaces must be in a certain relation to each other for a successful stacking
trial. In simple cases the necessary complementary shape is given over the entire
top and bottom regions. More complicated objects may only share some of those
complementary regions, but at least enough to keep a stacking element grounded
on the base.

When objects are provided to an agent, the relevant surfaces cannot be per-
ceived directly. Nevertheless humans are able to assume whether an object is
stackable or not, without seeing this surface. They do it by using several cues
based on their own experience to fulfill this task.

Consequently, in theMACSproject, affordanceswithin a robotic systemare rep-
resented by relations between cues, behaviors, and outcomes. The space of learned
affordances is thus a multi-relational repository from which cue-behavior-outcome
triples canbe derived.Tobe able to extract these triples is not only crucial for learn-
ing by self-experience and for planning but also for learning by imitation to match
observed cue and outcomes to previously made self-experience. That means that
triples, which are 1:1:1 relations, are derived from that o:m:n relations database.

The cues and outcomes, their inter-relations as well as the relation to the
causing actions are learnt from the incoming perceptual data stream. For a
detailed description of the learning approach see paper Learning of Interaction
Possibilities in this volume.

The schema in Fig. 5 depicts the key components of the developed Learning
Module that is connected to and interacts with the overall affordances based
architecture (see Sec. 3). The image shows which modules are required and
how they are interconnected to realize the required data and control flow. The
depicted modules, the used data structures, and the data / control flow are
described in the following sub-sections.

6.1 Application Spaces Module

The agent applies actions to the environment. While doing that the agent per-
manently monitors its environment and the internal states before, during and
after the application. The sets of resulting time series are stored within behavior
specific Application Spaces in the Application Spaces Module to be available for
the learning processes. The begin and the end of the application of the actions
must be marked within each stored time series. To be able to learn a cue for the
existence of an affordance and the concerning outcomes (consequences of using
an affordance), the recorded time series have to include data from a certain time
interval before and after the application of the behavior.

During the learning process, the Application Spaces are divided into parti-
tions. This partitioning information, i.e. a Partitioner Object, as created by the
Partitioning Module (see Sec. 6.2), is stored in relation to its corresponding ap-
plication space.

The relevant sensor channel information that is extracted during the learning
process (see Sec. 6.3) as well as the characterization of these sensor channels (see
Sec. 6.4) are to be stored within the Application Spaces as well.
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Fig. 5. The key components of the developed learning architecture, its modules, and
the data (dashed lines) and control flows (solid lines) between the components

6.2 Partitioning

In the application space of an action sets of similar action application results
should exist after a sufficient number of trials. For example in case of the appli-
cation space of action “close gripper”, the following subsets could emerge:

– a set of results where the involved objects were gripped,
– a set of results where the objects slipped away,
– a set of results where the objects were not grippable at all.

As input the Partitioning Module receives the data of an Application Space.
This Application Space contains a set of time series, resulting from several ap-
plications of the same action. The Partitioning Module provides a mechanism to
discriminate these different types of action application results from each other.

The output of the Partitioning Module is a Partitioner Object that is stored
and linked to the belonging application space. The Partitioner Object provides
a function to decide for a given time series to which partition it belongs. A
partition is thus defined as the set of all time series that are mapped to the same
partition identifier.

When there is already a Partitioner Object assigned to an Application Space
and the agent acquired new experiences concerning the related behavior (new
time series are stored within the Application Space) the partitioner must be
adapted to these new experiences, if they deviate from the previous made ones.
This re-learning process could change the Partitioner Object and thus could
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cause previously recorded time series to change their partition. It is also possible
that new partitions emerge.

6.3 Relevant Sensor Channel Extraction

In the next step sensor channels are extracted from the time series of each
partition of an application space that are representative for these partitions.
Representative means, that these channels are in direct relation with the differing
cues and outcomes, respectively. In case of performing an action that causes
lifting an object, the partitions resulting from liftable and non-liftable objects
will differ in the height (y-position time series) and (optionally) in the force
sensor channel. For learning cues in this given example, the channel of the color
blob filter (y-position of the blobs) could be representative for the partitions. As
input, the Relevant Sensor Channel Extraction Module (RSCEM) receives the
data of an Application Space that is already partitioned.

To find characteristic channels concerning cues, the same process is applied
to the pre-application part of the recorded time series of a partition. These
partitions are sub-partitioned further.

As output, the RSCEM provides

– for each partition a set of channel identities of the relevant sensor channels
concerning the cue events for the Application Space

– for each partition a set of channel identities of the relevant sensor channels
concerning outcome events for the Application Space

These sets are stored in the relevant application space.
When there is already a Partitioner Object assigned to an Application Space

and the two sets of relevant sensor channels, and the agent acquired new experi-
ences in applying the related action (new data time series are stored within the
Application Space) an adaptation of the set of relevant sensor channels for the
partitions could be necessary in the case, that e.g.

– the previously gained knowledge was incomplete (new environmental config-
urations, e.g. new objects occurred)

– the configuration of the sensors or actuators has changed (e.g. broken or
altered because of growth or enhancement)

– the partitioning has changed (e.g. partitions altered or new partitions
emerged, see Sec. 6.2).

6.4 Event Characterization

After the extraction of the relevant sensor channel(s), descriptions of what is
characteristic for the relevant channel(s) of the partitions are to be derived, i.e.
cue characteristics and outcome characteristics. These characteristics are used
to enable the agent to recognize affordances (in case of characterizing cue related
channels) or to monitor the outcome of the application of an action (in case of
characterizing outcome related channels).
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As input, the Event Characterizer Module (ECM) receives data of an Ap-
plication Space in which the sets of relevant sensor channels for each partition
(derived by the Relevant Sensor Channel Extraction Module, section 6.3) are
stored.

As output the Event Characterizer Module provides

– for each partition a set of cue characteristics for the Application Space,
– for each partition a set of outcome characteristics for the Application Space.

Similar considerations to above with respect to new experiences apply.

6.5 Characteristics Abstraction

The task of the Characteristics Abstraction Module (CAM) is first to find sim-
ilarities between the elements of a given set of outcome characteristics. Two or
more characteristics could share a subset of characteristics, e.g. two different
outcomes (different ball trajectories) of two behaviors applied to a ball (beat-
ing and kicking) share the characteristics, that the ball is moved and that the
space in front of the agent is free after the behavior application. On an abstract
level of observation, looking at these examples regarding the “change location”
characteristic and neglecting the different time series that occur, both action
applications and the corresponding outcomes are equal.

The described abstraction process, and the storage of this gathered abstracted
outcome information in the Application Spaces, enable an artificial agent to treat
two or more actions as equal, with regard to the expected outcome of applying
these actions in the context of the related cue characteristics. Regarding the
above mentioned example where two different behaviors (beating and kicking)
are applied on the same object (a ball), the two different behaviors are equal
for reaching the outcome described by the derived abstracted “change location”
characteristic.

Additionally, objects or entities can be treated as equal, regarding the outcome
that occurs by applying such equal actions. Even if objects or entities do not
share visual features, they can be treated as equal under the context of applying
those equal actions and gaining the abstracted outcome characteristics.

The outcome of the characterization process together with the extraction
of abstracted characteristics by using similarity measurements on the level of
characteristics (done by the CAM) enables the agent to measure similarities
between entities on the abstract level of functionality. Thus the agent is enabled
to achieve a level of semantic similarity measurement based on its perceptional
similarity measurement abilities together with its behavioral experiences, which
provides one method of solution to the complex problem of semantic similarity
measurement in robotics [64].

7 Simulator and Demonstrator

We have described a demonstrator scenario and sketched a number of proof-of-
concept experiments [65] that are suited to demonstrate the novelty of the MACS
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approach. The experiments will be performed with a six-wheeled mobile robot
with a simple crane arm manipulator, named Kurt3D. The robot is available
both in a physics-based simulation, MACSim, and as a physical system (four
units). With the integrated system, we plan to conduct a number of experiments
in stack building, where we use a variety of test objects, from specifically made
objects to everyday objects, that the robot shall use for building stacks. The
robot shall learn the functions of stacking bases, middle stack elements and top
stack elements, and, optionally, learn stability cues. The stack height should only
be limited by the maximum height of the crane arm magnet above ground and
the number and heights of stackable test objects. The robot will experiment with
many of these test objects and learn cues for the presence of certain functions
or affordances. Cues in this sense may be invariants across a wide range of test
objects with different appearances. The robot shall learn how to use these test
objects for the stacking task. The final challenge will be the use of new test
objects that offer the same functions but have different appearances than the
test objects that have been employed in the initial learning phase. Separate real-
world experiments have been conducted with all modules of the architecture
(perception of affordances, learning of affordances, planning using affordances,
basic skills). Also, various experiments have been conducted in the simulator
MACSim. In this section, we will describe the physical demonstrator and the
simulator, and we will provide an overview on the experiments we have conducted
so far and which are described in several publications.

7.1 Physical Demonstrator

The main elements of the physical demonstrator are a mobile robot, Kurt3D,
an experimentation arena called the demonstrator environment, and test objects
for perception and manipulation experiments.

The MACS version of the Kurt3D mobile robot platform consists of the
Kurt2 base platform, the Kurt3D sensory enhancements, the MACS rack and
a newly developed crane manipulator. The Kurt2 base platform is a six-wheeled
mobile robot platform of roughly one by one foot width and depth, and eight
inches height. The robot has three wheels on each side, which are connected by a
tooth-belt. Per side, a single DC motor drives all wheels via the tooth-belt. The
drives and other low-level functions are controlled via a C167 and a TMC 200
controller board and special firmware. These microcontrollers are connected via
CAN bus to an on-board notebook computer that runs the high-level control
programs under Linux. The standard sensory equipment consists of tilt sensors
and a number of distance transducers along the perimeter of the robot.

The Kurt3D configuration consists of two additional enhanced sensor sys-
tems: a 3D Laser scanner and a stereo pan-tilt camera system, which both were
developed at Fraunhofer IAIS. An additional rack has been mounted on top of
the robot in order to support a reversible notebook mount and the MACS crane
arm (Fig. 6).

The crane arm has three degrees of freedom. The arm itself can be rotated
around a vertical axis. A small lorry can be moved horizontally along the crane’s
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Fig. 6. The mobile robot Kurt3D, equipped with a crane arm manipulator and a
magnetic gripper

(a) (b)

Fig. 7. (a) The physical test arena, called demonstrator scenario, including a separating
wall, a sliding door, and a (red) switch to open the door. (b) The switch can be operated
by putting a weight on it, which will open the door. Removing the weight will close
the door. This particular set-up has been chosen to train the robot to observe effects
of its manipulation actions.

extension arm, and a magnetic griper can be raised and lowered along a rope
that is hanging from the movable lorry. This construction allows most simple
manipulation tasks, namely trying to ‘grip’ items in the environment with the
electromagnetic gripper and lift them.
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The demonstrator environment setup consists of a defined mission area with
the dimensions of 2.5m x 3.5m. The area is surrounded by walls that are 40cm
high and 5cm wide, made of heavy and robust wooden elements (Fig. 7(a)). As
first passive elements to be manipulated by the crane arm we use tin cans with
different colors, sizes and top designs. Some of them are magnetizable, some are
not. Their weight can easily be altered by butting in heavy material at any time.

The demonstrator scenario contains also active components: a movable divid-
ing wall with a motor driven sliding door that can divide the mission area into
two separate rooms. The door can be opened and closed via a switch. The switch
is operated depending on the weight put on it by the robot (Fig. 7(b)). The switch
has a weighing area of 25x25cm, is working on a high sensitive pressure sensor
(strain gauge element) and is adjustable to trigger on weights between 15g and
7kg. This particular setup has been chosen to train the robot to observe effects
of its manipulation actions.

The demonstrator environment and the test objects have been constructed
both physically and in simulation (Fig. 8).

(a) (b)

Fig. 8. (a) Simple experimentation environment, showing robot Kurt3D (FhG/AIS).
(b) Total view of the demonstrator environment in MACSim.

7.2 Simulator MACSim

MACSim (Fig. 9) is a high fidelity simulation environment that models the
Kurt3D robotic platform and its environment. Built on top of a commercial
quality open-source engine, ODE4 (Open Dynamics Engine), MACSim accu-
rately simulates the objects, robot parts, and their dynamics in a 3D world.

The simulation model of our mobile robot provided in MACSim closely
matches the real Kurt3D robot in many aspects. Based on their physical prop-
erties, such as mass, size, and center of mass, all parts that constitute the robot
are modelled as rigid bodies. Later, junction locations of these components were
measured, and they were assembled with appropriate joints to acquire the com-
plete simulated robot. In order to simulate different actuators of the robot, such
4 http://ode.org

http://ode.org
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Fig. 9. A snapshot from MACSim where the Kurt3D robot is modeled in an environ-
ment which is created for the demonstrator scenario

as wheel systems or camera servo motors, the joints are virtually constrained
and motorized with the parameters obtained from the real robot.

Realistic sensor modelling is also very crucial, since robot actions and con-
trol rely on the robot’s perception of the world. While ODE provides excellent
support for modelling rigid body dynamics based on laws of physics, similar to
many low level engines, virtual sensors are not explicitly supported. For example,
there is no ready-to-use acoustic signal or infra-red beam that could be sent or
received. For laser scanner and infrared proximity sensors, ODE’s ray geometry
and collision detection routines are utilized, and ray intersection method is used.
For color cameras, OpenGL’s backbuffer data is employed. Moreover, in order
to close the gap between reality and simulation, sensor and actuator parame-
ters are calibrated, based on the “same setup experiments” in virtual and real
worlds.

The reality of the simulator is further verified in [66,67], where the robot
controllers trained in the simulator are successfully transferred to the real robot.
For example, in [66], a large set of training data (approximately 3000 samples)
obtained from interactions of the robot with its environment is required to learn
the perception of traversability affordances. MACSim is utilized in a training
phase to decrease the time and cost of the learning process and to remove any risk
of physical damage that might occur on the real robot. It is later shown that the
robot is able to perceive the same affordances offered by the environment when
encountered with same situations either in simulated or real world. Moreover,
the physical effects created in the simulator and real world are compatible when
the robot executes a certain action in that particular situation.



200 E. Rome et al.

7.3 First Experiments

The final demonstrator scenario will be employed for the final proof of concept of
the MACS approach to affordance-inspired robot control. In this final scenario,
our robot shall demonstrate the capabilities of its integrated affordance-inspired
control architecture, where the planner creates affordance related operators using
affordance maps (Fig. 10), and tasks related to learning and goal-directed use of
affordances are performed based on these operators. However, for demonstrating
and evaluating the benefits of our new robot control approach we do not rely
on the final demonstrator alone. Instead, we decided to provide also proofs of
concept for several significant steps during the development process. For this
purpose, we defined a framework for selected experiments allowing us to analyse
the performance of our approach in an isolated and well defined way, starting
with simple tasks and increasing the complexity step by step towards the final
demonstrator scenario [65,68]. In the phase of the project where the basic skills
and perceptual feature detectors necessary for performing affordance related
tasks were developed, specific experiments were performed to prove the explicit
support for our affordance concept.

For introducing affordance support into robot perception, we first examined
the generation of a traversability map based on laser scanner input and a pre-
programmed classification of traversable areas in the environment [33]. Next, we
developed feature filters based on SIFT descriptors that enable ‘top down’ and
‘bottom up’ detection and classification of simple image features. This enables
the robot to distinguish features in the top, body and bottom regions of test
objects in the environment. These filters work equally well on simulated and
real camera data [69,70,71,72].

A desired basic skill of our robot is the autonomous exploration of its environ-
ment. One question here was: Based on simple features alone, how can the robot
find interesting spots in its environment that potentially contain items that it
can manipulate, and thus enable it to learn from its actions. For this purpose,
a special variant of the visual attention system VOCUS ([54], cf. Sec. 5.3) has
been successfully employed. For driving towards the salient location, the robot’s
Behavior System provides basic navigational skills, namely driving through free
space that is computed based on data of the 3D Laser scanner. The combination
of basic navigational skills with salient region detection by VOCUS enables the
robot to explore its environment by selecting potentially interesting areas and
driving towards them until they are in range of the robot’s manipulator. We have
informally named this combination ‘curiosity drive’ behavior. For the creation of
an appropriate Behavior System, we also performed experiments in autonomous
navigation and map generation with basic support for affordance information
[38,73].

Based on these concepts and results, the next development phase was dedi-
cated to the integration of the architecture components and to the introduction
of learning mechanisms. The latter ones are mainly employed to determine the
descriptive feature sets that are either cues for a certain affordance, or descrip-
tors of the outcomes of the robot’s acting upon an affordance. The results of
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Left Room Right Room

Fig. 10. Affordance Map. The world (cf. Fig. 9) is separated into several regions.
If the robot perceives an affordance within one of those regions the affordance type is
added to the map. Plans are made based on the constructed affordance map.

reinforcement learning experiments of predictive cues in affordance-based per-
ception were presented in [62,53,51,52]. Learning mechanisms for environmental
cues needed for perceiving the traversability affordance were demonstrated in
[74,66] and used in ‘curiosity drive’ experiments in [67]. Here, we tried to for-
mally define the ‘curiosity’ notion beyond saliency measures by introducing an
SVM based measure that helps the robot to decide whether an interaction pos-
sibility is worthwhile exploring (cf. also below). In this phase, we have used ex-
tensively both the MACSim simulator and synthetic data for our developments
and experiments related to learning, which was beneficial.

Exploiting affordance perception and learnt knowledge for goal-directed be-
havior is the focus of the last phase of our development. In our recent experiments
we accomplished the transition of primitive behaviors to goal-directed behavior
by using learnt behavior-effect relations and situation awareness to achieve more
complex behaviors [66,76,77,78]. In this study, the robot interacts with its en-
vironment by executing a set of primitive behaviors and collecting interaction
samples. Based on these experiences, the robot discovers the different effects it
can create in the environment, and associates an observed effect with the prim-
itive behaviors and environmental situations that resulted in this effect. The
robot then uses the learnt relations to achieve more complex behaviors. In our
experiment, we used three primitive behaviors (turn-left, turn-right, and move-
forward) and the learnt affordance relations of these behaviors to achieve three
different goal-directed behaviors (traverse, approach, and avoid). Since the robot
learns the affordance relations from its own experiences, it is not trivial for a
human observer to specify a goal that ‘makes sense’ to the robot. One solution
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Fig. 11. Three cases in which different goal-directed behaviors (traverse, avoid, ap-
proach) make use of different primitive behaviors (move-forward, turn-right, turn-left)
in the same setting of the environment (source: [75]).

is to use as goal descriptors effect prototypes that can be learned from a range
of similar observed effects. As an evaluation criterion, priorities can be assigned
to learnt effect prototypes. This enables the robot to select and execute a prim-
itive behavior that would result in an effect similar to the goal, i.e. to the effect
prototype having the highest priority. The results of this study are sketched in
Fig. 11.

The learned affordance relations can also be used as operators for planning,
since they provide the capability to predict the effects of behaviors as discussed
in the context of cue-outcome based planning [41]. In a recent study [79], we
used these predictions to generate totally ordered plans which are composed of
sequences of primitive behaviors. Forward chaining is used for this purpose. The
robot starts with perceiving the present entity, and predicts the effects that each
of its (five) primitive behaviors will create. Next, it estimates the five future
entities that the robot will perceive after execution of corresponding behaviors
by summing up the predicted effects and current entity. The robot then proceeds
by predicting the effects of behaviors on those future entities and estimating next
entities. This process can be viewed as the breath-first construction of a plan
tree where the branching factor is the number of behaviors. Planning stops when
any future entity or total predicted effect of the behavior sequence satisfies the
desired goal. Fig. 12 shows a number of sample plans generated using learned
affordance relations for different goals in various environments.

In another series of experiments, we studied the learning of traversability af-
fordances and investigated how the required number of interactions with the en-
vironment can be minimized with minimal degradation on the learning process.
Specifically, we applied a two step learning process which consists of bootstrap-
ping and curiosity-based learning phases. In the bootstrapping phase, a small set
of initial interaction data were used to find the relevant perceptual features for
the affordance, and were used to train a Support Vector Machine classifier. In
the curiosity-driven learning phase it was determined whether a given interaction
opportunity is worth exploring or not [67] (see Fig. 13 below).
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Fig. 12. The generated plans are shown as sequences of primitive behaviors. For lift-
ing and stacking tasks the goals are defined as increase in the crane rope tension
and decrease in the distance features on middle grids of the scan image, respectively.
The primitive behaviors used in these experiments are turn-left, turn-right, and move-
forward, lift, and release. (source: [80]).

Fig. 13. This sequence shows how the perception of traversability affordance are used
to navigate in blocked situations. The initial position of the robot is shown in the
left-most figure. The robot first goes forward, then turns left since trash-bin does not
afford traversability. Third snapshot shows the robot driving over the spherical object.
The path of the robot is shown in the last figure. (source: [67]).

The effects of two parameters of our learning system that serve as the curios-
ity threshold and the number of bootstrap samples were examined in systematic
experiments. Selecting a small threshold keeps the system away from interacting
with interesting situations, and selecting a large one slows down learning, since
uninteresting samples are used for training. As for the number of bootstrap
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samples, small values degrade the performance of the system and large values be-
yond a certain threshold do not improve the performance. The affordance percep-
tion system, trained using optimized parameters, was tested in our scenario clut-
tered with objects of varying shapes. In this environment, the robot was able to
predict the traversability affordances of the objects and wander around the room.
The trained controller was transferred to the real robot and was also successful in
predicting the traversability affordance of real world objects. Further experiments
will make use of the completely integrated robot control architecture until the full
complexity of the final demonstrator scenario tasks will be achieved.

8 Conclusion

The concept of affordances has a strong appeal, since it seems to be intuitively
understandable and applicable to a variety of areas. Several groups and re-
searchers have been inspired by the concept of affordances. Affordances have
been used in design of human-computer interfaces, in the development of new
approaches for robot control, and in investigations of human wayfinding strate-
gies in large man-made infra-structures [81].

In all these areas, the major problem for utilization is to find a model that
is suitable for the particular usage or implementation of the affordance concept.
One major difficulty for finding operational models of the affordance concept is
the vast generality of J.J. Gibson’s affordance definition which he simply defined
for all “animals”. The questions arose whether it is really applicable to beings
as different as crickets and humans, and whether is applicable to animals at
different levels of individual development.

In this article, we have presented a comprehensive approach to affordance-
inspired robot control. The approach is based on our own operational model
of affordances in the context of Robotics. It is built on a representational con-
cept, the affordance representation triples, consisting of cue–behavior–outcome
descriptors. Such representations are generated during an initial learning phase
by analysing the streams of basic and complex perceptual features and applying
a three stage learning approach. This comprises the “bottom-up” part in the
proposed architecture. The “top-down” part of the architecture foresees the use
of affordances for deliberate action, i.e. mission planning and execution. Thus,
affordance support is built into all components of the proposed architecture.

The learned representations are grounded in the robot’s actions and percep-
tions, thus they “make sense” for the robot. However, for a human observer, the
comprehensability of the learned affordance representations currently remains an
open problem. Schönherr [82] presented a solution for a similar case by letting a
human assign a symbol to a set of features designating a “situation”. A similar
solution could be applied to assign “meaning” to affordance representations.

The presented approach to affordance-based planning foresees the goal-
directed selection of the proper kind of affordance to act upon. This first ver-
sion of the planner uses PDDL to define the plan operators. A second version, if
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feasible, shall introduce new operators that use the full range of cue-behavior-
outcome descriptors.

The final stage of the MACS project will be dedicated to extensive experimen-
tation and evaluation of the approach.Regarding the benefit of affordance-inspired
control, the hypothesis is that it will provide a systematic way to detect
agent-specific possibilities and alternatives for action based on function-oriented
perception. A working implementation would enable a robot to find more action al-
ternatives than pure appearance-basedperception approaches, since current state-
of-the-art appearance-based robot perception approaches typically can handle
only about 100 everyday objects, which clearly limits interaction possibilities.

However, there are many situations where (object) recognition capabilities are
required. Neisser [83] proposed an approach that includes both affordance-related
perception and object recognition. To date this approach has not been realized
in robot control either. Thus, as a long term research question, the interaction
between affordance perception and object recognition seems to be worthwhile
to pursue. Investigating the little explored affordance-inspired perception and
control is a prerequisite for a combined system along Neisser’s considerations.
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E., Doherty, P., Rome, E., Müller, B.S.: Report on experiment design. Technical
Report MACS/6/4.1 v1, Fraunhofer Institut für Autonome Intelligente Systeme,
Sankt Augustin, Germany (2004)

69. Paletta, L., Fritz, G., Kumar, M., Hertzberg, J., Schönherr, F.: Top-down and
bottom-up symbol grounding. Technical Report MACS/3/1.1 v3, Joanneum Re-
search Institute of Digital Image Processing Computational Perception (CAPE),
Graz, Austria (2005)
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